通过虚拟信标支持的机器学习进行室内定位

Herbert De Oliveira, Marcelo Daride Gaspar, V. Azevedo, Paulo Salgado, Carmelo Bastos-Filho
{"title":"通过虚拟信标支持的机器学习进行室内定位","authors":"Herbert De Oliveira, Marcelo Daride Gaspar, V. Azevedo, Paulo Salgado, Carmelo Bastos-Filho","doi":"10.25286/repa.v7i2.2219","DOIUrl":null,"url":null,"abstract":"Este artigo apresenta uma solução ao problema de localização indoor por meio de aprendizagem de máquina com o apoio de um novo conceito denominado beacon virtual. Esse conceito mostrou consideráveis ganhos em desempenho em modelos onde a representatividade dos dados é crucial na precisão das predições do modelo. Beacons virtuais também podem ser úteis em ambientes onde a instalação de beacons de referência em determinados pontos poderiam gerar transtornos à movimentação de pessoas e objetos em geral. A título de comparação de desempenho, a solução foi implementada considerando quatro algoritmos diferentes de aprendizagem de máquina, sendo dois deles lineares e os outros dois não lineares. Validações com dados reais apontaram o modelo baseado em Multilayer Perceptron (MLP) como o modelo de melhor desempenho entre os quatro modelos considerados no que diz respeito ao menor erro entre a posição predita e a real, sendo que a aplicação do conceito de beacon virtual fora determinante para tal resultado.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localização Indoor por Meio de Aprendizagem de Máquina Apoiada por Beacons Virtuais\",\"authors\":\"Herbert De Oliveira, Marcelo Daride Gaspar, V. Azevedo, Paulo Salgado, Carmelo Bastos-Filho\",\"doi\":\"10.25286/repa.v7i2.2219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este artigo apresenta uma solução ao problema de localização indoor por meio de aprendizagem de máquina com o apoio de um novo conceito denominado beacon virtual. Esse conceito mostrou consideráveis ganhos em desempenho em modelos onde a representatividade dos dados é crucial na precisão das predições do modelo. Beacons virtuais também podem ser úteis em ambientes onde a instalação de beacons de referência em determinados pontos poderiam gerar transtornos à movimentação de pessoas e objetos em geral. A título de comparação de desempenho, a solução foi implementada considerando quatro algoritmos diferentes de aprendizagem de máquina, sendo dois deles lineares e os outros dois não lineares. Validações com dados reais apontaram o modelo baseado em Multilayer Perceptron (MLP) como o modelo de melhor desempenho entre os quatro modelos considerados no que diz respeito ao menor erro entre a posição predita e a real, sendo que a aplicação do conceito de beacon virtual fora determinante para tal resultado.\",\"PeriodicalId\":331078,\"journal\":{\"name\":\"Revista de Engenharia e Pesquisa Aplicada\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Engenharia e Pesquisa Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25286/repa.v7i2.2219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v7i2.2219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在虚拟信标的支持下,提出了一种利用机器学习解决室内定位问题的方法。在数据的代表性对模型预测的准确性至关重要的模型中,这一概念在性能上有了相当大的提高。在某些地方安装参考信标可能会对人员和物体的移动造成干扰的环境中,虚拟信标也很有用。作为性能比较,该解决方案考虑了四种不同的机器学习算法,其中两种是线性的,另外两种是非线性的。模型验证和实际数据指出基于Multilayer Perceptron (MLP)之间的性能最佳的模式四种模式被认为是对于预测和实际位置之间的微小的错误,和应用程序的虚拟信标的概念决定了这样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localização Indoor por Meio de Aprendizagem de Máquina Apoiada por Beacons Virtuais
Este artigo apresenta uma solução ao problema de localização indoor por meio de aprendizagem de máquina com o apoio de um novo conceito denominado beacon virtual. Esse conceito mostrou consideráveis ganhos em desempenho em modelos onde a representatividade dos dados é crucial na precisão das predições do modelo. Beacons virtuais também podem ser úteis em ambientes onde a instalação de beacons de referência em determinados pontos poderiam gerar transtornos à movimentação de pessoas e objetos em geral. A título de comparação de desempenho, a solução foi implementada considerando quatro algoritmos diferentes de aprendizagem de máquina, sendo dois deles lineares e os outros dois não lineares. Validações com dados reais apontaram o modelo baseado em Multilayer Perceptron (MLP) como o modelo de melhor desempenho entre os quatro modelos considerados no que diz respeito ao menor erro entre a posição predita e a real, sendo que a aplicação do conceito de beacon virtual fora determinante para tal resultado.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信