心脏电生理僵硬问题的高阶Rush-Larsen时间步进方法

Y. Coudière, C. D. Lontsi, C. Pierre, Yvescoudì Ere, Charlie Douanla-Lontsi
{"title":"心脏电生理僵硬问题的高阶Rush-Larsen时间步进方法","authors":"Y. Coudière, C. D. Lontsi, C. Pierre, Yvescoudì Ere, Charlie Douanla-Lontsi","doi":"10.1553/etna_vol52s342","DOIUrl":null,"url":null,"abstract":"The development of efficient solvers in cardiac electrophysiology requires high order (semi) explicit and stable time stepping methods. In this paper are introduced two new exponential integrators of orders 3 and 4. They generalize the order 2 Rush Larsen scheme derived by Perego and Veneziani [24] in 2009. They have been named Rush Larsen of order k, shortly RL k. The RL k schemes are explicit exponential multistep integrators. They display a simple general formulation and an easy implementation. The RL k schemes are shown to be stable under perturbation (or 0-stable) and con-vergent of order k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL k method is numerically studied as applied to the membrane equation in cardiac electrophysiology.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rush-Larsen time-stepping methods of high order for stiff problems in cardiac electrophysiology\",\"authors\":\"Y. Coudière, C. D. Lontsi, C. Pierre, Yvescoudì Ere, Charlie Douanla-Lontsi\",\"doi\":\"10.1553/etna_vol52s342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of efficient solvers in cardiac electrophysiology requires high order (semi) explicit and stable time stepping methods. In this paper are introduced two new exponential integrators of orders 3 and 4. They generalize the order 2 Rush Larsen scheme derived by Perego and Veneziani [24] in 2009. They have been named Rush Larsen of order k, shortly RL k. The RL k schemes are explicit exponential multistep integrators. They display a simple general formulation and an easy implementation. The RL k schemes are shown to be stable under perturbation (or 0-stable) and con-vergent of order k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL k method is numerically studied as applied to the membrane equation in cardiac electrophysiology.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol52s342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol52s342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

开发有效的心脏电生理学求解方法需要高阶(半)显式和稳定的时间步进方法。本文介绍了两个新的3阶和4阶指数积分器。他们推广了Perego和Veneziani[24]在2009年导出的2阶Rush Larsen格式。它们被命名为k阶的Rush Larsen,简称RL k。RL k格式是显式指数多步积分器。它们具有简单的一般公式和易于实现的特点。证明了RL k格式在扰动下是稳定的(或0稳定的),并且收敛于k阶。它们具有非常大的稳定域,前提是与该方法相关的稳定器能够很好地捕获问题的刚性模态。对rlk方法在心脏电生理膜方程中的应用进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rush-Larsen time-stepping methods of high order for stiff problems in cardiac electrophysiology
The development of efficient solvers in cardiac electrophysiology requires high order (semi) explicit and stable time stepping methods. In this paper are introduced two new exponential integrators of orders 3 and 4. They generalize the order 2 Rush Larsen scheme derived by Perego and Veneziani [24] in 2009. They have been named Rush Larsen of order k, shortly RL k. The RL k schemes are explicit exponential multistep integrators. They display a simple general formulation and an easy implementation. The RL k schemes are shown to be stable under perturbation (or 0-stable) and con-vergent of order k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL k method is numerically studied as applied to the membrane equation in cardiac electrophysiology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信