具有马尔可夫交换和多延迟的中性型神经网络的有限时间同步

Hui-Chung Shi, Dongbing Tong
{"title":"具有马尔可夫交换和多延迟的中性型神经网络的有限时间同步","authors":"Hui-Chung Shi, Dongbing Tong","doi":"10.5220/0008855703730377","DOIUrl":null,"url":null,"abstract":": In this brief, the problem of the finite-time synchronization is considered for neutral-type neural networks (NTNNs) with the Markovian switching and multi-delays. Sufficient conditions are acquired for the finite-time synchronization of NTNNs by Lyapunov stability theory. Then, the adaptive control is designed by a suitable updated law. Finally, a numerical simulation is given to illustrate the effectiveness of the obtained result.","PeriodicalId":186406,"journal":{"name":"Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-Time Synchronization for Neutral-Type Neural Networks with Markovian Switching and Multi-Delays\",\"authors\":\"Hui-Chung Shi, Dongbing Tong\",\"doi\":\"10.5220/0008855703730377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In this brief, the problem of the finite-time synchronization is considered for neutral-type neural networks (NTNNs) with the Markovian switching and multi-delays. Sufficient conditions are acquired for the finite-time synchronization of NTNNs by Lyapunov stability theory. Then, the adaptive control is designed by a suitable updated law. Finally, a numerical simulation is given to illustrate the effectiveness of the obtained result.\",\"PeriodicalId\":186406,\"journal\":{\"name\":\"Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0008855703730377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 5th International Conference on Vehicle, Mechanical and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0008855703730377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有马尔可夫切换和多时延的中性型神经网络的有限时间同步问题。利用李雅普诺夫稳定性理论,得到了ntnn有限时间同步的充分条件。然后,采用合适的更新律设计自适应控制。最后,通过数值仿真验证了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-Time Synchronization for Neutral-Type Neural Networks with Markovian Switching and Multi-Delays
: In this brief, the problem of the finite-time synchronization is considered for neutral-type neural networks (NTNNs) with the Markovian switching and multi-delays. Sufficient conditions are acquired for the finite-time synchronization of NTNNs by Lyapunov stability theory. Then, the adaptive control is designed by a suitable updated law. Finally, a numerical simulation is given to illustrate the effectiveness of the obtained result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信