{"title":"靶向给药控制器验证的实验纳米医学平台","authors":"I. Birs, C. Muresan, S. Folea, O. Prodan","doi":"10.1109/ANZCC.2017.8298504","DOIUrl":null,"url":null,"abstract":"Targeted drug delivery is a focus point in recent advances in the nanomedical field due to its many advantages such as decreased side effects, faster action and better drug absorption with less substance used. The paper presents an experimental platform that simulates the circulatory system: the passing of blood from arteries to smaller blood vessels, while also capturing the non-Newtonian characteristic of the blood. The targeted drug delivery is ensured by a scalable submersible equipped with various sensors and actuators such that the real-time position of the submersible can be determined and controlled in the circulatory system. The purpose of the presented work is to provide a solid foundation for experimental modeling of the interaction between the submersible and non-Newtonian fluids and for validating different control strategies suitable for velocity control. The experimental setup takes into account the real life difficulties of targeted drug delivery.","PeriodicalId":429208,"journal":{"name":"2017 Australian and New Zealand Control Conference (ANZCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An experimental nanomedical platform for controller validation on targeted drug delivery\",\"authors\":\"I. Birs, C. Muresan, S. Folea, O. Prodan\",\"doi\":\"10.1109/ANZCC.2017.8298504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeted drug delivery is a focus point in recent advances in the nanomedical field due to its many advantages such as decreased side effects, faster action and better drug absorption with less substance used. The paper presents an experimental platform that simulates the circulatory system: the passing of blood from arteries to smaller blood vessels, while also capturing the non-Newtonian characteristic of the blood. The targeted drug delivery is ensured by a scalable submersible equipped with various sensors and actuators such that the real-time position of the submersible can be determined and controlled in the circulatory system. The purpose of the presented work is to provide a solid foundation for experimental modeling of the interaction between the submersible and non-Newtonian fluids and for validating different control strategies suitable for velocity control. The experimental setup takes into account the real life difficulties of targeted drug delivery.\",\"PeriodicalId\":429208,\"journal\":{\"name\":\"2017 Australian and New Zealand Control Conference (ANZCC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Australian and New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC.2017.8298504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australian and New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2017.8298504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An experimental nanomedical platform for controller validation on targeted drug delivery
Targeted drug delivery is a focus point in recent advances in the nanomedical field due to its many advantages such as decreased side effects, faster action and better drug absorption with less substance used. The paper presents an experimental platform that simulates the circulatory system: the passing of blood from arteries to smaller blood vessels, while also capturing the non-Newtonian characteristic of the blood. The targeted drug delivery is ensured by a scalable submersible equipped with various sensors and actuators such that the real-time position of the submersible can be determined and controlled in the circulatory system. The purpose of the presented work is to provide a solid foundation for experimental modeling of the interaction between the submersible and non-Newtonian fluids and for validating different control strategies suitable for velocity control. The experimental setup takes into account the real life difficulties of targeted drug delivery.