基于卷积神经网络和迁移学习的乳腺癌组织病理学图像自动检测

Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari
{"title":"基于卷积神经网络和迁移学习的乳腺癌组织病理学图像自动检测","authors":"Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari","doi":"10.30812/matrik.v22i3.2803","DOIUrl":null,"url":null,"abstract":"cancer caused 2.3 million cases and 685,000 deaths in 2020. Histopathology analysis is one of the tests used to determine a patient’s prognosis. However, histopathology analysis is a time-consuming and stressful process. With advances in deep learning methods, computer vision science can be used to detect cancer in medical images, which is expected to improve the accuracy of prognosis. This study aimed to apply Convolutional Neural Network (CNN) and Transfer Learning methods to classify breast cancer histopathology images to diagnose breast tumors. This method used CNN, Transfer Learning ((Visual Geometry Group (VGG16), and Residual Network (ResNet50)). These models undergo data augmentation and balancing techniques applied to undersampling techniques. The dataset used for this study was ”The BreakHis Database of microscopic biopsy images of breast tumors (benign and malignant),” with 1693 data classified into two categories: Benign and Malignant. The results of this study were based on recall, precision, and accuracy values. CNN accuracy was 94%, VGG16 accuracy was 88%, and ResNet50 accuracy was 72%. The conclusion was that the CNN method is recommended in detecting breast cancer to diagnose breast cancer.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning\",\"authors\":\"Didih Rizki Chandranegara, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra, Zamah Sari\",\"doi\":\"10.30812/matrik.v22i3.2803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"cancer caused 2.3 million cases and 685,000 deaths in 2020. Histopathology analysis is one of the tests used to determine a patient’s prognosis. However, histopathology analysis is a time-consuming and stressful process. With advances in deep learning methods, computer vision science can be used to detect cancer in medical images, which is expected to improve the accuracy of prognosis. This study aimed to apply Convolutional Neural Network (CNN) and Transfer Learning methods to classify breast cancer histopathology images to diagnose breast tumors. This method used CNN, Transfer Learning ((Visual Geometry Group (VGG16), and Residual Network (ResNet50)). These models undergo data augmentation and balancing techniques applied to undersampling techniques. The dataset used for this study was ”The BreakHis Database of microscopic biopsy images of breast tumors (benign and malignant),” with 1693 data classified into two categories: Benign and Malignant. The results of this study were based on recall, precision, and accuracy values. CNN accuracy was 94%, VGG16 accuracy was 88%, and ResNet50 accuracy was 72%. The conclusion was that the CNN method is recommended in detecting breast cancer to diagnose breast cancer.\",\"PeriodicalId\":364657,\"journal\":{\"name\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/matrik.v22i3.2803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v22i3.2803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2020年,癌症造成230万例病例和68.5万人死亡。组织病理学分析是确定患者预后的一种检验方法。然而,组织病理学分析是一个耗时和紧张的过程。随着深度学习方法的进步,计算机视觉科学可以用于检测医学图像中的癌症,这有望提高预后的准确性。本研究旨在应用卷积神经网络(CNN)和迁移学习(Transfer Learning)方法对乳腺癌组织病理图像进行分类,以诊断乳腺肿瘤。该方法使用了CNN、迁移学习(Visual Geometry Group (VGG16))和残余网络(ResNet50)。这些模型经过应用于欠采样技术的数据增强和平衡技术。本研究使用的数据集是“BreakHis乳腺肿瘤显微活检图像数据库(良性和恶性)”,其中1693个数据分为良性和恶性两类。本研究的结果是基于查全率、查准率和查准率。CNN准确率为94%,VGG16准确率为88%,ResNet50准确率为72%。结论是推荐CNN法检测乳腺癌诊断乳腺癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning
cancer caused 2.3 million cases and 685,000 deaths in 2020. Histopathology analysis is one of the tests used to determine a patient’s prognosis. However, histopathology analysis is a time-consuming and stressful process. With advances in deep learning methods, computer vision science can be used to detect cancer in medical images, which is expected to improve the accuracy of prognosis. This study aimed to apply Convolutional Neural Network (CNN) and Transfer Learning methods to classify breast cancer histopathology images to diagnose breast tumors. This method used CNN, Transfer Learning ((Visual Geometry Group (VGG16), and Residual Network (ResNet50)). These models undergo data augmentation and balancing techniques applied to undersampling techniques. The dataset used for this study was ”The BreakHis Database of microscopic biopsy images of breast tumors (benign and malignant),” with 1693 data classified into two categories: Benign and Malignant. The results of this study were based on recall, precision, and accuracy values. CNN accuracy was 94%, VGG16 accuracy was 88%, and ResNet50 accuracy was 72%. The conclusion was that the CNN method is recommended in detecting breast cancer to diagnose breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信