基于多层感知器神经网络的多光谱图像识别与水体地籍登记

E. Dianderas, K. Rojas, G. Kemper
{"title":"基于多层感知器神经网络的多光谱图像识别与水体地籍登记","authors":"E. Dianderas, K. Rojas, G. Kemper","doi":"10.1109/STSIVA.2014.7010132","DOIUrl":null,"url":null,"abstract":"In this article is developed a technique that allows to calculate the presence of vegetation, glaciers and water bodies through multispectral image processing employing a Multi-layer Perceptron Neural Netwok, giving the option to discriminate the presence of lakes to generate the cadastral registration of these. The supervised classification that was implemented has a high level of robustness and reliability, since the validation of the data obtained at a geolocation level have a 0% of error and the parameters of the area and perimeter an approximate error of 10%.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Identification and cadastral registration of water bodies through multispectral image processing with multi-layer Perceptron Neural Network\",\"authors\":\"E. Dianderas, K. Rojas, G. Kemper\",\"doi\":\"10.1109/STSIVA.2014.7010132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article is developed a technique that allows to calculate the presence of vegetation, glaciers and water bodies through multispectral image processing employing a Multi-layer Perceptron Neural Netwok, giving the option to discriminate the presence of lakes to generate the cadastral registration of these. The supervised classification that was implemented has a high level of robustness and reliability, since the validation of the data obtained at a geolocation level have a 0% of error and the parameters of the area and perimeter an approximate error of 10%.\",\"PeriodicalId\":114554,\"journal\":{\"name\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2014.7010132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文开发了一种技术,该技术可以通过多层感知器神经网络的多光谱图像处理来计算植被、冰川和水体的存在,并提供了区分湖泊存在的选项,从而生成这些水体的地籍登记。所实现的监督分类具有很高的鲁棒性和可靠性,因为在地理位置级别上获得的数据的验证误差为0%,面积和周长参数的误差约为10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and cadastral registration of water bodies through multispectral image processing with multi-layer Perceptron Neural Network
In this article is developed a technique that allows to calculate the presence of vegetation, glaciers and water bodies through multispectral image processing employing a Multi-layer Perceptron Neural Netwok, giving the option to discriminate the presence of lakes to generate the cadastral registration of these. The supervised classification that was implemented has a high level of robustness and reliability, since the validation of the data obtained at a geolocation level have a 0% of error and the parameters of the area and perimeter an approximate error of 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信