基于CNN的基于各种网格地图的汽车雷达数据道路路线估计

Robert Prophet, Yi Jin, Juan-Carlos Fuentes-Michel, Anastasios Deligiannis, Ingo Weber, M. Vossiek
{"title":"基于CNN的基于各种网格地图的汽车雷达数据道路路线估计","authors":"Robert Prophet, Yi Jin, Juan-Carlos Fuentes-Michel, Anastasios Deligiannis, Ingo Weber, M. Vossiek","doi":"10.1109/ICMIM48759.2020.9299086","DOIUrl":null,"url":null,"abstract":"Automotive radar is a promising technology with regard to path planning, since radar systems offer a comparatively long range and are robust against bad weather conditions. In this paper, we use Convolutional Neural Networks (CNN) to determine the current road course from radar point clouds. For this purpose, we first transform the radar point cloud into various gridmaps, which then serve as an input for the CNN. The quality of the road course estimation is evaluated using a test dataset. Exemplary test results showed an average deviation of less than 91 cm at a range of 100 m between the ground truth and the estimated road course. These excellent results prove that CNN processing of radar measurements is an attractive option for reliable and precise road course estimation.","PeriodicalId":150515,"journal":{"name":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CNN Based Road Course Estimation on Automotive Radar Data with Various Gridmaps\",\"authors\":\"Robert Prophet, Yi Jin, Juan-Carlos Fuentes-Michel, Anastasios Deligiannis, Ingo Weber, M. Vossiek\",\"doi\":\"10.1109/ICMIM48759.2020.9299086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive radar is a promising technology with regard to path planning, since radar systems offer a comparatively long range and are robust against bad weather conditions. In this paper, we use Convolutional Neural Networks (CNN) to determine the current road course from radar point clouds. For this purpose, we first transform the radar point cloud into various gridmaps, which then serve as an input for the CNN. The quality of the road course estimation is evaluated using a test dataset. Exemplary test results showed an average deviation of less than 91 cm at a range of 100 m between the ground truth and the estimated road course. These excellent results prove that CNN processing of radar measurements is an attractive option for reliable and precise road course estimation.\",\"PeriodicalId\":150515,\"journal\":{\"name\":\"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIM48759.2020.9299086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM48759.2020.9299086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

汽车雷达在路径规划方面是一项很有前途的技术,因为雷达系统提供了相对较长的范围,并且在恶劣天气条件下也很强大。在本文中,我们使用卷积神经网络(CNN)从雷达点云中确定当前的道路路线。为此,我们首先将雷达点云转换成各种网格图,然后作为CNN的输入。使用测试数据集评估道路路线估计的质量。示例性测试结果表明,在100米范围内,地面真实值与估计道路航向之间的平均偏差小于91厘米。这些优秀的结果证明,CNN处理雷达测量是可靠和精确的道路航向估计的一个有吸引力的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN Based Road Course Estimation on Automotive Radar Data with Various Gridmaps
Automotive radar is a promising technology with regard to path planning, since radar systems offer a comparatively long range and are robust against bad weather conditions. In this paper, we use Convolutional Neural Networks (CNN) to determine the current road course from radar point clouds. For this purpose, we first transform the radar point cloud into various gridmaps, which then serve as an input for the CNN. The quality of the road course estimation is evaluated using a test dataset. Exemplary test results showed an average deviation of less than 91 cm at a range of 100 m between the ground truth and the estimated road course. These excellent results prove that CNN processing of radar measurements is an attractive option for reliable and precise road course estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信