预测短期风速的深度递归神经网络模型

Navid Atashfaraz, M. Manthouri, Arash Hosseini
{"title":"预测短期风速的深度递归神经网络模型","authors":"Navid Atashfaraz, M. Manthouri, Arash Hosseini","doi":"10.32010/26166127.2022.5.2.169.182","DOIUrl":null,"url":null,"abstract":"Wind speed/power has received increasing attention worldwide due to its renewable nature and environmental friendliness. Wind power capacity is rapidly increasing with the global installed, and the wind industry is growing into a large-scale business. We are looking for wind speed prediction to use wind power better. In this research, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural Network (Simple RNN), and LSTM-GRU in the subset of artificial intelligence algorithms are used to predict wind speed. The data used in this study are related to the 10-minute wind speed data. In the first study on this dataset, we obtained significant results. To compare the deep recurrent models created, we implement four neural network models: Stacked Auto Encoder, Denoising Auto Encoder, Stacked Denoising Auto Encoder, and Feed-Forward presented in the research of others on this dataset. According to the RMSE statistical index, the LSTM network is worth 0.0222 for a short time and performs better than others in this dataset.","PeriodicalId":275688,"journal":{"name":"Azerbaijan Journal of High Performance Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEEP RECURRENT NEURAL NETWORK MODELS FOR FORECASTING SHORT-TERM WIND SPEED\",\"authors\":\"Navid Atashfaraz, M. Manthouri, Arash Hosseini\",\"doi\":\"10.32010/26166127.2022.5.2.169.182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind speed/power has received increasing attention worldwide due to its renewable nature and environmental friendliness. Wind power capacity is rapidly increasing with the global installed, and the wind industry is growing into a large-scale business. We are looking for wind speed prediction to use wind power better. In this research, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural Network (Simple RNN), and LSTM-GRU in the subset of artificial intelligence algorithms are used to predict wind speed. The data used in this study are related to the 10-minute wind speed data. In the first study on this dataset, we obtained significant results. To compare the deep recurrent models created, we implement four neural network models: Stacked Auto Encoder, Denoising Auto Encoder, Stacked Denoising Auto Encoder, and Feed-Forward presented in the research of others on this dataset. According to the RMSE statistical index, the LSTM network is worth 0.0222 for a short time and performs better than others in this dataset.\",\"PeriodicalId\":275688,\"journal\":{\"name\":\"Azerbaijan Journal of High Performance Computing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Azerbaijan Journal of High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32010/26166127.2022.5.2.169.182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32010/26166127.2022.5.2.169.182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风速/风力因其可再生和环保的特性在世界范围内受到越来越多的关注。随着全球风电装机容量的迅速增加,风电产业正在成长为一个大规模的产业。我们正在寻找风速预测,以便更好地利用风力。本研究采用人工智能算法子集中的长短期记忆(LSTM)、门控循环单元(GRU)、简单循环神经网络(Simple RNN)和LSTM-GRU进行风速预测。本研究使用的数据与10分钟风速数据有关。在对这个数据集的第一次研究中,我们获得了显著的结果。为了比较所创建的深度循环模型,我们在该数据集上实现了四种神经网络模型:堆叠自动编码器、去噪自动编码器、堆叠去噪自动编码器和前馈。根据RMSE统计指数,LSTM网络在短时间内的值为0.0222,在该数据集中表现优于其他网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEEP RECURRENT NEURAL NETWORK MODELS FOR FORECASTING SHORT-TERM WIND SPEED
Wind speed/power has received increasing attention worldwide due to its renewable nature and environmental friendliness. Wind power capacity is rapidly increasing with the global installed, and the wind industry is growing into a large-scale business. We are looking for wind speed prediction to use wind power better. In this research, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Simple Recurrent Neural Network (Simple RNN), and LSTM-GRU in the subset of artificial intelligence algorithms are used to predict wind speed. The data used in this study are related to the 10-minute wind speed data. In the first study on this dataset, we obtained significant results. To compare the deep recurrent models created, we implement four neural network models: Stacked Auto Encoder, Denoising Auto Encoder, Stacked Denoising Auto Encoder, and Feed-Forward presented in the research of others on this dataset. According to the RMSE statistical index, the LSTM network is worth 0.0222 for a short time and performs better than others in this dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信