基于拓扑数据分析的灰度图像分割

Yugo Ogio, Y. Minami, M. Ishikawa
{"title":"基于拓扑数据分析的灰度图像分割","authors":"Yugo Ogio, Y. Minami, M. Ishikawa","doi":"10.5687/iscie.34.243","DOIUrl":null,"url":null,"abstract":"In this paper, we applied topological data analysis (TDA) to the segmentation of grayscale images. TDA is a method to extract topological features such as hollows from data. It is expected that we can segment images because we can regard objects in images as hollows. In this paper, we first confirmed that the TDA based method was effective in the segmentation of halftone images by random dithering. Then, we compared the proposed method and the combination of Otsu’s method and TDA. Finally, we evaluated the performance of our method using standard images and CT-images.","PeriodicalId":403477,"journal":{"name":"Transactions of the Institute of Systems, Control and Information Engineers","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grayscale Image Segmentation based on Topological Data Analysis\",\"authors\":\"Yugo Ogio, Y. Minami, M. Ishikawa\",\"doi\":\"10.5687/iscie.34.243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we applied topological data analysis (TDA) to the segmentation of grayscale images. TDA is a method to extract topological features such as hollows from data. It is expected that we can segment images because we can regard objects in images as hollows. In this paper, we first confirmed that the TDA based method was effective in the segmentation of halftone images by random dithering. Then, we compared the proposed method and the combination of Otsu’s method and TDA. Finally, we evaluated the performance of our method using standard images and CT-images.\",\"PeriodicalId\":403477,\"journal\":{\"name\":\"Transactions of the Institute of Systems, Control and Information Engineers\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Systems, Control and Information Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5687/iscie.34.243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Systems, Control and Information Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5687/iscie.34.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将拓扑数据分析(TDA)应用于灰度图像的分割。TDA是一种从数据中提取空穴等拓扑特征的方法。因为我们可以把图像中的物体看作是空洞,所以我们可以分割图像。本文首先验证了基于TDA的随机抖动半色调图像分割方法的有效性。然后,我们将所提出的方法与Otsu的方法与TDA的结合进行了比较。最后,我们使用标准图像和ct图像评估了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grayscale Image Segmentation based on Topological Data Analysis
In this paper, we applied topological data analysis (TDA) to the segmentation of grayscale images. TDA is a method to extract topological features such as hollows from data. It is expected that we can segment images because we can regard objects in images as hollows. In this paper, we first confirmed that the TDA based method was effective in the segmentation of halftone images by random dithering. Then, we compared the proposed method and the combination of Otsu’s method and TDA. Finally, we evaluated the performance of our method using standard images and CT-images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信