剖宫产数据分类中不同机器学习方法的评价

O.S.S. Alsharif, K. M. Elbayoudi, A.A.S. Aldrawi, K. Akyol
{"title":"剖宫产数据分类中不同机器学习方法的评价","authors":"O.S.S. Alsharif, K. M. Elbayoudi, A.A.S. Aldrawi, K. Akyol","doi":"10.5815/ijieeb.2019.05.03","DOIUrl":null,"url":null,"abstract":"Recently, a new dataset has been introduced about the caesarean data. In this paper, the caesarean data was classified with five different algorithms; Support Vector Machine, K Nearest Neighbours, Naïve Bayes, Decision Tree Classifier, and Random Forest Classifier. The dataset is retrieved from California University website. The main objective of this study is to compare selected algorithms’ performances. This study has shown that the best accuracy that was for Naïve Bayes while the highest sensitivity which was for Support Vector Machine.","PeriodicalId":427770,"journal":{"name":"International Journal of Information Engineering and Electronic Business","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Different Machine Learning Methods for Caesarean Data Classification\",\"authors\":\"O.S.S. Alsharif, K. M. Elbayoudi, A.A.S. Aldrawi, K. Akyol\",\"doi\":\"10.5815/ijieeb.2019.05.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a new dataset has been introduced about the caesarean data. In this paper, the caesarean data was classified with five different algorithms; Support Vector Machine, K Nearest Neighbours, Naïve Bayes, Decision Tree Classifier, and Random Forest Classifier. The dataset is retrieved from California University website. The main objective of this study is to compare selected algorithms’ performances. This study has shown that the best accuracy that was for Naïve Bayes while the highest sensitivity which was for Support Vector Machine.\",\"PeriodicalId\":427770,\"journal\":{\"name\":\"International Journal of Information Engineering and Electronic Business\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Engineering and Electronic Business\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijieeb.2019.05.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Engineering and Electronic Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijieeb.2019.05.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,一个关于剖腹产数据的新数据集被引入。本文采用五种不同的算法对剖宫产数据进行分类;支持向量机,K近邻,Naïve贝叶斯,决策树分类器,随机森林分类器。数据集来自加州大学网站。本研究的主要目的是比较所选算法的性能。该研究表明,Naïve贝叶斯的准确率最高,而支持向量机的灵敏度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Different Machine Learning Methods for Caesarean Data Classification
Recently, a new dataset has been introduced about the caesarean data. In this paper, the caesarean data was classified with five different algorithms; Support Vector Machine, K Nearest Neighbours, Naïve Bayes, Decision Tree Classifier, and Random Forest Classifier. The dataset is retrieved from California University website. The main objective of this study is to compare selected algorithms’ performances. This study has shown that the best accuracy that was for Naïve Bayes while the highest sensitivity which was for Support Vector Machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信