基于改进的水平集和流体体积耦合框架的液滴蒸发模型

Huihuang Xia, M. Kamlah
{"title":"基于改进的水平集和流体体积耦合框架的液滴蒸发模型","authors":"Huihuang Xia, M. Kamlah","doi":"10.11159/htff22.127","DOIUrl":null,"url":null,"abstract":"Extended Abstract Modelling droplet evaporation is of great importance for many applications, such as inkjet printing, spray coating and combustion of fuel droplets [1, 2]. The key issues in the context of modelling droplet evaporation involve free-surface capturing [3], the phase change from liquid to vapour [4], and accurate calculations of the surface tension force [5]. Inaccurate calculations of surface tension force generate spurious currents or velocities which appear around the interface. Spurious currents destabilize the simulations and even influence the internal flow inside the droplets when studying droplets numerically [6]. In view of the issues mentioned above, we develop an improved Coupled Level Set and Volume of Fluid (i-CLSVoF) framework without explicit interface reconstruction for modelling micro-sized droplets with and without evaporation. A new surface tension force model with additional filtering steps is developed and implemented in the i-CLSVoF framework to suppress un-physical spurious velocities. Numerical benchmark cases demonstrate the excellence of the i-CLSVoF framework in reducing the un-physical spurious velocities (the un-physical spurious velocity converges to 10 −10 which is small enough to eliminate the influence of un-physical spurious velocities on the numerical stabilities). A simple yet efficient velocity-potential based approach is proposed to reconstruct a divergence-free velocity field for the advection of the free surface when the phase changes. The new approach fixes the numerical issues resulting from the evaporation-induced","PeriodicalId":385356,"journal":{"name":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling Droplet Evaporation with an Improved Coupled Level Set and Volume of Fluid (I-Clsvof) Framework\",\"authors\":\"Huihuang Xia, M. Kamlah\",\"doi\":\"10.11159/htff22.127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Abstract Modelling droplet evaporation is of great importance for many applications, such as inkjet printing, spray coating and combustion of fuel droplets [1, 2]. The key issues in the context of modelling droplet evaporation involve free-surface capturing [3], the phase change from liquid to vapour [4], and accurate calculations of the surface tension force [5]. Inaccurate calculations of surface tension force generate spurious currents or velocities which appear around the interface. Spurious currents destabilize the simulations and even influence the internal flow inside the droplets when studying droplets numerically [6]. In view of the issues mentioned above, we develop an improved Coupled Level Set and Volume of Fluid (i-CLSVoF) framework without explicit interface reconstruction for modelling micro-sized droplets with and without evaporation. A new surface tension force model with additional filtering steps is developed and implemented in the i-CLSVoF framework to suppress un-physical spurious velocities. Numerical benchmark cases demonstrate the excellence of the i-CLSVoF framework in reducing the un-physical spurious velocities (the un-physical spurious velocity converges to 10 −10 which is small enough to eliminate the influence of un-physical spurious velocities on the numerical stabilities). A simple yet efficient velocity-potential based approach is proposed to reconstruct a divergence-free velocity field for the advection of the free surface when the phase changes. The new approach fixes the numerical issues resulting from the evaporation-induced\",\"PeriodicalId\":385356,\"journal\":{\"name\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/htff22.127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/htff22.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

液滴蒸发建模对于喷墨打印、喷涂和燃料液滴燃烧等许多应用非常重要[1,2]。液滴蒸发建模的关键问题包括自由表面捕获[3]、从液体到蒸汽的相变[4]以及表面张力的精确计算[5]。表面张力的不准确计算会在界面周围产生虚假的电流或速度。在对液滴进行数值研究时,杂散电流会破坏模拟的稳定性,甚至影响液滴内部的流动[6]。鉴于上述问题,我们开发了一个改进的耦合水平集和流体体积(i-CLSVoF)框架,不需要显式界面重建,用于模拟有蒸发和没有蒸发的微尺度液滴。在i-CLSVoF框架下,开发并实现了一种新的带有附加滤波步骤的表面张力模型,以抑制非物理的伪速度。数值基准算例证明了i-CLSVoF框架在减小非物理伪速度方面的优越性(非物理伪速度收敛到10−10,这个值小到足以消除非物理伪速度对数值稳定性的影响)。提出了一种简单而有效的基于速度势的方法来重建相变时自由表面平流的无散度速度场。新方法解决了由蒸发引起的数值问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling Droplet Evaporation with an Improved Coupled Level Set and Volume of Fluid (I-Clsvof) Framework
Extended Abstract Modelling droplet evaporation is of great importance for many applications, such as inkjet printing, spray coating and combustion of fuel droplets [1, 2]. The key issues in the context of modelling droplet evaporation involve free-surface capturing [3], the phase change from liquid to vapour [4], and accurate calculations of the surface tension force [5]. Inaccurate calculations of surface tension force generate spurious currents or velocities which appear around the interface. Spurious currents destabilize the simulations and even influence the internal flow inside the droplets when studying droplets numerically [6]. In view of the issues mentioned above, we develop an improved Coupled Level Set and Volume of Fluid (i-CLSVoF) framework without explicit interface reconstruction for modelling micro-sized droplets with and without evaporation. A new surface tension force model with additional filtering steps is developed and implemented in the i-CLSVoF framework to suppress un-physical spurious velocities. Numerical benchmark cases demonstrate the excellence of the i-CLSVoF framework in reducing the un-physical spurious velocities (the un-physical spurious velocity converges to 10 −10 which is small enough to eliminate the influence of un-physical spurious velocities on the numerical stabilities). A simple yet efficient velocity-potential based approach is proposed to reconstruct a divergence-free velocity field for the advection of the free surface when the phase changes. The new approach fixes the numerical issues resulting from the evaporation-induced
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信