微波吸收结构的有源微波热成像无损评价

A. Mirala, M. Ghasr, K. Donnell
{"title":"微波吸收结构的有源微波热成像无损评价","authors":"A. Mirala, M. Ghasr, K. Donnell","doi":"10.1109/I2MTC.2018.8409631","DOIUrl":null,"url":null,"abstract":"Radio-frequency absorbing materials (RAM) are widely used to reduce electromagnetic interference and scattering from reflective (e.g. conductive) surfaces such as those utilized in aerospace and military applications. Thus, it is important to nondestructively assess such structures for their structural health (i.e., defect detection). To this end, active microwave thermography (AMT) is considered as a viable solution. AMT utilizes a microwave-based thermal excitation for structures/materials under inspection. The resulting surface thermal profile is measured with a thermal camera. As it relates to structures with a microwave-absorbing surface, the surface (when illuminated by microwave radiation) absorbs this energy and thus acts as a thermographic heat source. In order to show the practical applicability of AMT for inspections of the aforementioned structures, two carbon-fiber reinforced polymer (CFRP) samples (containing defects), with and without RAM, are inspected. The results show that the detection capability is significantly improved when the samples contain RAM on their surface, thereby illustrating the efficacy of AMT for inspection of such structures.","PeriodicalId":393766,"journal":{"name":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nondestructive assessment of microwave absorbing structures via active microwave thermography\",\"authors\":\"A. Mirala, M. Ghasr, K. Donnell\",\"doi\":\"10.1109/I2MTC.2018.8409631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio-frequency absorbing materials (RAM) are widely used to reduce electromagnetic interference and scattering from reflective (e.g. conductive) surfaces such as those utilized in aerospace and military applications. Thus, it is important to nondestructively assess such structures for their structural health (i.e., defect detection). To this end, active microwave thermography (AMT) is considered as a viable solution. AMT utilizes a microwave-based thermal excitation for structures/materials under inspection. The resulting surface thermal profile is measured with a thermal camera. As it relates to structures with a microwave-absorbing surface, the surface (when illuminated by microwave radiation) absorbs this energy and thus acts as a thermographic heat source. In order to show the practical applicability of AMT for inspections of the aforementioned structures, two carbon-fiber reinforced polymer (CFRP) samples (containing defects), with and without RAM, are inspected. The results show that the detection capability is significantly improved when the samples contain RAM on their surface, thereby illustrating the efficacy of AMT for inspection of such structures.\",\"PeriodicalId\":393766,\"journal\":{\"name\":\"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2018.8409631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2018.8409631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

射频吸收材料(RAM)广泛用于减少来自反射(例如导电)表面的电磁干扰和散射,例如在航空航天和军事应用中使用的材料。因此,对这些结构的结构健康进行无损评估(即缺陷检测)是很重要的。为此,主动微波热成像(AMT)被认为是一种可行的解决方案。AMT利用基于微波的热激发来检测结构/材料。用热像仪测量得到的表面热剖面。由于它与具有微波吸收表面的结构有关,表面(当被微波辐射照射时)吸收这种能量,从而充当热成像热源。为了证明AMT检测上述结构的实际适用性,对两个碳纤维增强聚合物(CFRP)样品(含缺陷),有和没有RAM进行了检测。结果表明,当样品表面含有RAM时,检测能力显著提高,从而说明了AMT检测此类结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondestructive assessment of microwave absorbing structures via active microwave thermography
Radio-frequency absorbing materials (RAM) are widely used to reduce electromagnetic interference and scattering from reflective (e.g. conductive) surfaces such as those utilized in aerospace and military applications. Thus, it is important to nondestructively assess such structures for their structural health (i.e., defect detection). To this end, active microwave thermography (AMT) is considered as a viable solution. AMT utilizes a microwave-based thermal excitation for structures/materials under inspection. The resulting surface thermal profile is measured with a thermal camera. As it relates to structures with a microwave-absorbing surface, the surface (when illuminated by microwave radiation) absorbs this energy and thus acts as a thermographic heat source. In order to show the practical applicability of AMT for inspections of the aforementioned structures, two carbon-fiber reinforced polymer (CFRP) samples (containing defects), with and without RAM, are inspected. The results show that the detection capability is significantly improved when the samples contain RAM on their surface, thereby illustrating the efficacy of AMT for inspection of such structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信