{"title":"大气湍流信道上的光空间脉冲位置调幅","authors":"T. Ozbilgin, M. Koca","doi":"10.1109/ICC.2014.6883849","DOIUrl":null,"url":null,"abstract":"We propose spatial pulse position amplitude modulation (SPPAM) as a novel optical signaling scheme with the capability of having higher power and spectral efficiencies than those of conventional optical modulation techniques. We evaluate the performance of SPPAM in free space optical (FSO) communication systems over weak-to-moderate and moderate-to-strong atmospheric turbulence channels and provide average bit error probability (ABEP) bounds for both uncoded and coded performances. Theoretical derivations are validated with simulation results which show that SPPAM forms a feasible alternative to other FSO modulation approaches.","PeriodicalId":444628,"journal":{"name":"2014 IEEE International Conference on Communications (ICC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optical spatial pulse position amplitude modulation over atmospheric turbulence channels\",\"authors\":\"T. Ozbilgin, M. Koca\",\"doi\":\"10.1109/ICC.2014.6883849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose spatial pulse position amplitude modulation (SPPAM) as a novel optical signaling scheme with the capability of having higher power and spectral efficiencies than those of conventional optical modulation techniques. We evaluate the performance of SPPAM in free space optical (FSO) communication systems over weak-to-moderate and moderate-to-strong atmospheric turbulence channels and provide average bit error probability (ABEP) bounds for both uncoded and coded performances. Theoretical derivations are validated with simulation results which show that SPPAM forms a feasible alternative to other FSO modulation approaches.\",\"PeriodicalId\":444628,\"journal\":{\"name\":\"2014 IEEE International Conference on Communications (ICC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2014.6883849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2014.6883849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical spatial pulse position amplitude modulation over atmospheric turbulence channels
We propose spatial pulse position amplitude modulation (SPPAM) as a novel optical signaling scheme with the capability of having higher power and spectral efficiencies than those of conventional optical modulation techniques. We evaluate the performance of SPPAM in free space optical (FSO) communication systems over weak-to-moderate and moderate-to-strong atmospheric turbulence channels and provide average bit error probability (ABEP) bounds for both uncoded and coded performances. Theoretical derivations are validated with simulation results which show that SPPAM forms a feasible alternative to other FSO modulation approaches.