基于b样条链椭圆模型的汽车雷达扩展目标跟踪

G. Yao, P. Wang, K. Berntorp, Hassan Mansour, P. Boufounos
{"title":"基于b样条链椭圆模型的汽车雷达扩展目标跟踪","authors":"G. Yao, P. Wang, K. Berntorp, Hassan Mansour, P. Boufounos","doi":"10.1109/ICASSP39728.2021.9415080","DOIUrl":null,"url":null,"abstract":"This paper introduces a B-spline chained ellipses model representation for extended object tracking (EOT) using high-resolution automotive radar measurements. With offline automotive radar training datasets, the proposed model parameters are learned using the expectation-maximization (EM) algorithm. Then the probabilistic multi-hypothesis tracking (PMHT) along with the unscented transform (UT) is proposed to deal with the nonlinear forward-warping coordinate transformation, the measurement-to-ellipsis association, and the state update step. Numerical validation is provided to verify the effectiveness of the proposed EOT framework with automotive radar measurements.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Extended Object Tracking With Automotive Radar Using B-Spline Chained Ellipses Model\",\"authors\":\"G. Yao, P. Wang, K. Berntorp, Hassan Mansour, P. Boufounos\",\"doi\":\"10.1109/ICASSP39728.2021.9415080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a B-spline chained ellipses model representation for extended object tracking (EOT) using high-resolution automotive radar measurements. With offline automotive radar training datasets, the proposed model parameters are learned using the expectation-maximization (EM) algorithm. Then the probabilistic multi-hypothesis tracking (PMHT) along with the unscented transform (UT) is proposed to deal with the nonlinear forward-warping coordinate transformation, the measurement-to-ellipsis association, and the state update step. Numerical validation is provided to verify the effectiveness of the proposed EOT framework with automotive radar measurements.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9415080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9415080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了一种基于高分辨率汽车雷达测量的扩展目标跟踪(EOT)的b样条链椭圆模型表示。对于离线汽车雷达训练数据集,使用期望最大化(EM)算法学习所提出的模型参数。然后提出了概率多假设跟踪(PMHT)和无气味变换(UT)来处理非线性前向弯曲坐标变换、测量-椭圆关联和状态更新步骤。通过汽车雷达测量,对所提出的EOT框架进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Object Tracking With Automotive Radar Using B-Spline Chained Ellipses Model
This paper introduces a B-spline chained ellipses model representation for extended object tracking (EOT) using high-resolution automotive radar measurements. With offline automotive radar training datasets, the proposed model parameters are learned using the expectation-maximization (EM) algorithm. Then the probabilistic multi-hypothesis tracking (PMHT) along with the unscented transform (UT) is proposed to deal with the nonlinear forward-warping coordinate transformation, the measurement-to-ellipsis association, and the state update step. Numerical validation is provided to verify the effectiveness of the proposed EOT framework with automotive radar measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信