语音信号的冗余性与语音自动识别的鲁棒性

J. Yousafzai, Z. Cvetković, M. Ager, Peter Sollich
{"title":"语音信号的冗余性与语音自动识别的鲁棒性","authors":"J. Yousafzai, Z. Cvetković, M. Ager, Peter Sollich","doi":"10.1109/RED.2012.6338416","DOIUrl":null,"url":null,"abstract":"Automatic speech recognition (ASR) systems are yet to achieve the level of robustness inherent to speech recognition by the human auditory system. The primary goal of this paper is to argue that exploiting the redundancy in speech signals could be the key to solving the problem of the lack of robustness. This view is supported by our recent results on phoneme classification and recognition in the presence of noise which are surveyed in this paper.","PeriodicalId":403644,"journal":{"name":"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Redundancy in speech signals and robustness of automatic speech recognition\",\"authors\":\"J. Yousafzai, Z. Cvetković, M. Ager, Peter Sollich\",\"doi\":\"10.1109/RED.2012.6338416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic speech recognition (ASR) systems are yet to achieve the level of robustness inherent to speech recognition by the human auditory system. The primary goal of this paper is to argue that exploiting the redundancy in speech signals could be the key to solving the problem of the lack of robustness. This view is supported by our recent results on phoneme classification and recognition in the presence of noise which are surveyed in this paper.\",\"PeriodicalId\":403644,\"journal\":{\"name\":\"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RED.2012.6338416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED.2012.6338416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动语音识别(ASR)系统尚未达到人类听觉系统语音识别固有的鲁棒性水平。本文的主要目的是论证利用语音信号中的冗余可能是解决鲁棒性不足问题的关键。这一观点得到了我们最近在有噪声情况下音素分类和识别的研究结果的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Redundancy in speech signals and robustness of automatic speech recognition
Automatic speech recognition (ASR) systems are yet to achieve the level of robustness inherent to speech recognition by the human auditory system. The primary goal of this paper is to argue that exploiting the redundancy in speech signals could be the key to solving the problem of the lack of robustness. This view is supported by our recent results on phoneme classification and recognition in the presence of noise which are surveyed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信