基于光谱空间特征提取的高光谱图像分类

Zhen Ye, Li-ling Tan, Lin Bai
{"title":"基于光谱空间特征提取的高光谱图像分类","authors":"Zhen Ye, Li-ling Tan, Lin Bai","doi":"10.1109/RSIP.2017.7958808","DOIUrl":null,"url":null,"abstract":"A novel hyperspectral classification algorithm based on spectral-spatial feature extraction is proposed. First, spectral-spatial features are extracted by Gabor transform in PCA-projected space. Following that, Gabor-feature bands are partitioned into multiple subsets. Afterwards, the adjacent features in each subset are fused. Finally, the fused features are processed by recursive filtering before feeding into support vector machine (SVM) classifier. Experimental results demonstrate that the proposed algorithm substantially outperforms the traditional and state-of-the-art methods.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hyperspectral image classification based on spectral-spatial feature extraction\",\"authors\":\"Zhen Ye, Li-ling Tan, Lin Bai\",\"doi\":\"10.1109/RSIP.2017.7958808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel hyperspectral classification algorithm based on spectral-spatial feature extraction is proposed. First, spectral-spatial features are extracted by Gabor transform in PCA-projected space. Following that, Gabor-feature bands are partitioned into multiple subsets. Afterwards, the adjacent features in each subset are fused. Finally, the fused features are processed by recursive filtering before feeding into support vector machine (SVM) classifier. Experimental results demonstrate that the proposed algorithm substantially outperforms the traditional and state-of-the-art methods.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于光谱空间特征提取的高光谱分类算法。首先,在pca投影空间中通过Gabor变换提取光谱空间特征;然后,将gabor特征带划分为多个子集。然后,对每个子集中的相邻特征进行融合。最后,对融合后的特征进行递归滤波处理,再输入支持向量机分类器。实验结果表明,该算法大大优于传统的和最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral image classification based on spectral-spatial feature extraction
A novel hyperspectral classification algorithm based on spectral-spatial feature extraction is proposed. First, spectral-spatial features are extracted by Gabor transform in PCA-projected space. Following that, Gabor-feature bands are partitioned into multiple subsets. Afterwards, the adjacent features in each subset are fused. Finally, the fused features are processed by recursive filtering before feeding into support vector machine (SVM) classifier. Experimental results demonstrate that the proposed algorithm substantially outperforms the traditional and state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信