无人机地基探测和躲避能力

Ray Young
{"title":"无人机地基探测和躲避能力","authors":"Ray Young","doi":"10.1109/ICNSURV.2018.8384837","DOIUrl":null,"url":null,"abstract":"The New York Unmanned Aircraft Systems (UAS) Test Site is developing a next-generation capability for supporting extended UAS beyond line-of-sight (BLOS) operations in airport terminal areas and in transition airspace. The Test Site has set up an instrumented test range to provide air traffic surveillance. This test range currently extends from the Griffiss International Airport, in Rome, New York, and its Class D airspace to about 40 NM to the north. To safely integrate UAS into civil airspace, a robust detect and avoid (DAA) capability is required. RTCA Special Committee (SC) 228 is incorporating ground-based detect and avoid (GBDAA) into minimum operating performance standards (MOPS) for UAS DAA in the current SC-228 Phase Two. SC-228 is also developing GB primary radar MOPS for detecting noncooperating air traffic. SC-228 Phase Two MOPS development scope supports civil UAS equipped to operate under IFR rules in extended UAS operations in Class D, E, and G, airspace, down to but not including ground operations. The guiding RTCA SC-228 Terms of Reference (TORs) focus on both airborne DAA systems (with sensors onboard the unmanned aircraft) and GBDAA sensors. While the SC-228 DAA MOPS scope is limited to large UAS operating under IFR, this paper makes a case that SC-228 MOPS-compliant GBDAA systems can also support small UAS operations in Very Low Level (VLL) airspace. The New York UAS Test Site Griffiss test range system employs multi-sensor fusion, using a combination of primary radar, wide area multilateration, and ADS-B, to track both cooperative and noncooperative air traffic. The system operates in combination with other dedicated air traffic surveillance sensors, including airborne DAA sensors. The system incorporates data collection, storage, and analysis capabilities supporting UAS integration into terminal and transition airspace, with live, virtual and constructive (LVC) simulation capabilities. By repurposing and leveraging mature systems such as ASDE-X and ASSC, the New York UAS Test Site not only avoids development of completely new prototype systems but also secures the advantage of built-in system health and performance monitoring. This paper supports the argument that dedicated capabilities such as those under development at the New York UAS Test Site are necessary to support development of concepts of operation (ConOps) and performance standards for future certification of UAS DAA systems. An instrumented test range will assist in validation of DAA system performance standards. The paper concludes with an example of how multi-sensor fusion in a range instrumentation system can be employed to make the safety case for beyond line-of-sight (BLOS) UAS operation.","PeriodicalId":112779,"journal":{"name":"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"UAS ground-based detect and avoid capability\",\"authors\":\"Ray Young\",\"doi\":\"10.1109/ICNSURV.2018.8384837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The New York Unmanned Aircraft Systems (UAS) Test Site is developing a next-generation capability for supporting extended UAS beyond line-of-sight (BLOS) operations in airport terminal areas and in transition airspace. The Test Site has set up an instrumented test range to provide air traffic surveillance. This test range currently extends from the Griffiss International Airport, in Rome, New York, and its Class D airspace to about 40 NM to the north. To safely integrate UAS into civil airspace, a robust detect and avoid (DAA) capability is required. RTCA Special Committee (SC) 228 is incorporating ground-based detect and avoid (GBDAA) into minimum operating performance standards (MOPS) for UAS DAA in the current SC-228 Phase Two. SC-228 is also developing GB primary radar MOPS for detecting noncooperating air traffic. SC-228 Phase Two MOPS development scope supports civil UAS equipped to operate under IFR rules in extended UAS operations in Class D, E, and G, airspace, down to but not including ground operations. The guiding RTCA SC-228 Terms of Reference (TORs) focus on both airborne DAA systems (with sensors onboard the unmanned aircraft) and GBDAA sensors. While the SC-228 DAA MOPS scope is limited to large UAS operating under IFR, this paper makes a case that SC-228 MOPS-compliant GBDAA systems can also support small UAS operations in Very Low Level (VLL) airspace. The New York UAS Test Site Griffiss test range system employs multi-sensor fusion, using a combination of primary radar, wide area multilateration, and ADS-B, to track both cooperative and noncooperative air traffic. The system operates in combination with other dedicated air traffic surveillance sensors, including airborne DAA sensors. The system incorporates data collection, storage, and analysis capabilities supporting UAS integration into terminal and transition airspace, with live, virtual and constructive (LVC) simulation capabilities. By repurposing and leveraging mature systems such as ASDE-X and ASSC, the New York UAS Test Site not only avoids development of completely new prototype systems but also secures the advantage of built-in system health and performance monitoring. This paper supports the argument that dedicated capabilities such as those under development at the New York UAS Test Site are necessary to support development of concepts of operation (ConOps) and performance standards for future certification of UAS DAA systems. An instrumented test range will assist in validation of DAA system performance standards. The paper concludes with an example of how multi-sensor fusion in a range instrumentation system can be employed to make the safety case for beyond line-of-sight (BLOS) UAS operation.\",\"PeriodicalId\":112779,\"journal\":{\"name\":\"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSURV.2018.8384837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Integrated Communications, Navigation, Surveillance Conference (ICNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSURV.2018.8384837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

纽约无人机系统(UAS)试验场正在开发下一代能力,以支持机场终端区域和过渡空域的扩展UAS超视距(BLOS)操作。该试验场建立了一个仪表化的试验场,以提供空中交通监视。该测试范围目前从纽约罗马的格里菲斯国际机场及其D类空域向北延伸约40海里。为了将无人机安全集成到民用空域,需要强大的探测和避免(DAA)能力。RTCA特别委员会(SC) 228正在SC-228第二阶段将地基探测和躲避(GBDAA)纳入无人机DAA的最低操作性能标准(MOPS)。SC-228也在发展GB初级雷达MOPS,用于探测不合作的空中交通。SC-228第二阶段MOPS开发范围支持民用无人机在IFR规则下在D类、E类和G类空域扩展无人机操作,直至但不包括地面操作。指导RTCA SC-228的职权范围(TORs)侧重于机载DAA系统(在无人机上带有传感器)和GBDAA传感器。虽然SC-228 DAA的MOPS范围仅限于在IFR下运行的大型无人机,但本文提出了SC-228 MOPS兼容的GBDAA系统也可以支持在极低空域(VLL)运行的小型无人机的案例。纽约UAS试验场Griffiss测试靶场系统采用多传感器融合,使用初级雷达、广域多频和ADS-B的组合,跟踪合作和非合作空中交通。该系统与其他专用空中交通监视传感器(包括机载DAA传感器)结合使用。该系统集成了数据收集、存储和分析能力,支持UAS集成到终端和过渡空域,并具有实时、虚拟和构造(LVC)模拟能力。通过重新利用和利用成熟的系统,如ASDE-X和ASSC,纽约无人机试验场不仅避免了开发全新的原型系统,而且还确保了内置系统健康和性能监控的优势。本文支持这样一种观点,即纽约UAS试验场正在开发的专用能力对于支持未来UAS DAA系统认证的操作概念(ConOps)和性能标准的开发是必要的。仪器测试范围将有助于验证DAA系统性能标准。本文最后给出了一个例子,说明了如何在距离仪表系统中使用多传感器融合来实现超视距(BLOS)无人机操作的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UAS ground-based detect and avoid capability
The New York Unmanned Aircraft Systems (UAS) Test Site is developing a next-generation capability for supporting extended UAS beyond line-of-sight (BLOS) operations in airport terminal areas and in transition airspace. The Test Site has set up an instrumented test range to provide air traffic surveillance. This test range currently extends from the Griffiss International Airport, in Rome, New York, and its Class D airspace to about 40 NM to the north. To safely integrate UAS into civil airspace, a robust detect and avoid (DAA) capability is required. RTCA Special Committee (SC) 228 is incorporating ground-based detect and avoid (GBDAA) into minimum operating performance standards (MOPS) for UAS DAA in the current SC-228 Phase Two. SC-228 is also developing GB primary radar MOPS for detecting noncooperating air traffic. SC-228 Phase Two MOPS development scope supports civil UAS equipped to operate under IFR rules in extended UAS operations in Class D, E, and G, airspace, down to but not including ground operations. The guiding RTCA SC-228 Terms of Reference (TORs) focus on both airborne DAA systems (with sensors onboard the unmanned aircraft) and GBDAA sensors. While the SC-228 DAA MOPS scope is limited to large UAS operating under IFR, this paper makes a case that SC-228 MOPS-compliant GBDAA systems can also support small UAS operations in Very Low Level (VLL) airspace. The New York UAS Test Site Griffiss test range system employs multi-sensor fusion, using a combination of primary radar, wide area multilateration, and ADS-B, to track both cooperative and noncooperative air traffic. The system operates in combination with other dedicated air traffic surveillance sensors, including airborne DAA sensors. The system incorporates data collection, storage, and analysis capabilities supporting UAS integration into terminal and transition airspace, with live, virtual and constructive (LVC) simulation capabilities. By repurposing and leveraging mature systems such as ASDE-X and ASSC, the New York UAS Test Site not only avoids development of completely new prototype systems but also secures the advantage of built-in system health and performance monitoring. This paper supports the argument that dedicated capabilities such as those under development at the New York UAS Test Site are necessary to support development of concepts of operation (ConOps) and performance standards for future certification of UAS DAA systems. An instrumented test range will assist in validation of DAA system performance standards. The paper concludes with an example of how multi-sensor fusion in a range instrumentation system can be employed to make the safety case for beyond line-of-sight (BLOS) UAS operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信