基于NCTR的合成数据库树状分层小波表示的开发

C. Brousseau
{"title":"基于NCTR的合成数据库树状分层小波表示的开发","authors":"C. Brousseau","doi":"10.1109/RADAR.2010.5494593","DOIUrl":null,"url":null,"abstract":"In this paper, problem of efficient representation of large database of target radar cross section is investigated in order to minimize memory requirements and recognition search time, using a tree structured hierarchical wavelet representation. Synthetic RCS of large aircrafts, in the HF-VHF bands, are used as experimental data. Hierarchical trees are built using wavelet multiresolution representation and K-means clustering algorithm. Criteria used to define these hierarchical trees are described and the obtained performances are presented.","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of a tree structured hierarchical wavelet representation of synthetic database to NCTR\",\"authors\":\"C. Brousseau\",\"doi\":\"10.1109/RADAR.2010.5494593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, problem of efficient representation of large database of target radar cross section is investigated in order to minimize memory requirements and recognition search time, using a tree structured hierarchical wavelet representation. Synthetic RCS of large aircrafts, in the HF-VHF bands, are used as experimental data. Hierarchical trees are built using wavelet multiresolution representation and K-means clustering algorithm. Criteria used to define these hierarchical trees are described and the obtained performances are presented.\",\"PeriodicalId\":125591,\"journal\":{\"name\":\"2010 IEEE Radar Conference\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2010.5494593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了最大限度地减少存储需求和识别搜索时间,本文研究了采用树状分层小波表示方法对大型目标雷达截面数据库进行高效表示的问题。以大型飞机的高频-甚高频波段合成RCS作为实验数据。采用小波多分辨率表示和k均值聚类算法构建层次树。描述了用于定义这些层次树的标准,并给出了所获得的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a tree structured hierarchical wavelet representation of synthetic database to NCTR
In this paper, problem of efficient representation of large database of target radar cross section is investigated in order to minimize memory requirements and recognition search time, using a tree structured hierarchical wavelet representation. Synthetic RCS of large aircrafts, in the HF-VHF bands, are used as experimental data. Hierarchical trees are built using wavelet multiresolution representation and K-means clustering algorithm. Criteria used to define these hierarchical trees are described and the obtained performances are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信