A. Fiat, Dean Phillips Foster, H. Karloff, Y. Rabani, Yiftach Ravid, S. Vishwanathan
{"title":"分层图遍历的竞争算法","authors":"A. Fiat, Dean Phillips Foster, H. Karloff, Y. Rabani, Yiftach Ravid, S. Vishwanathan","doi":"10.1109/SFCS.1991.185381","DOIUrl":null,"url":null,"abstract":"A layered graph is a connected, weighted graph whose vertices are partitioned into sets L/sub 0/=(s), L/sub 1/, L/sub 2/, . . ., and whose edges run between consecutive layers. Its width is max( mod L/sub i/ mod ). In the online layered graph traversal problem, a searcher starts at s in a layered graph of unknown width and tries to reach a target vertex t; however, the vertices in layer i and the edges between layers i-1 and i are only revealed when the searcher reaches layer i-1. The authors give upper and lower bounds on the competitive ratio of layered graph traversal algorithms. They give a deterministic online algorithm that is O(9w)-competitive on width-w graphs and prove that for no w can a deterministic online algorithm have a competitive ratio better than 2w/sup -2/ on width-w graphs. They prove that for all w, w/2 is a lower bound on the competitive ratio of any randomized online layered graph traversal algorithm. For traversing layered graphs consisting of w disjoint paths tied together at a common source, they give a randomized online algorithm with a competitive ratio of O(log w) and prove that this is optimal up to a constant factor.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Competitive algorithms for layered graph traversal\",\"authors\":\"A. Fiat, Dean Phillips Foster, H. Karloff, Y. Rabani, Yiftach Ravid, S. Vishwanathan\",\"doi\":\"10.1109/SFCS.1991.185381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A layered graph is a connected, weighted graph whose vertices are partitioned into sets L/sub 0/=(s), L/sub 1/, L/sub 2/, . . ., and whose edges run between consecutive layers. Its width is max( mod L/sub i/ mod ). In the online layered graph traversal problem, a searcher starts at s in a layered graph of unknown width and tries to reach a target vertex t; however, the vertices in layer i and the edges between layers i-1 and i are only revealed when the searcher reaches layer i-1. The authors give upper and lower bounds on the competitive ratio of layered graph traversal algorithms. They give a deterministic online algorithm that is O(9w)-competitive on width-w graphs and prove that for no w can a deterministic online algorithm have a competitive ratio better than 2w/sup -2/ on width-w graphs. They prove that for all w, w/2 is a lower bound on the competitive ratio of any randomized online layered graph traversal algorithm. For traversing layered graphs consisting of w disjoint paths tied together at a common source, they give a randomized online algorithm with a competitive ratio of O(log w) and prove that this is optimal up to a constant factor.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Competitive algorithms for layered graph traversal
A layered graph is a connected, weighted graph whose vertices are partitioned into sets L/sub 0/=(s), L/sub 1/, L/sub 2/, . . ., and whose edges run between consecutive layers. Its width is max( mod L/sub i/ mod ). In the online layered graph traversal problem, a searcher starts at s in a layered graph of unknown width and tries to reach a target vertex t; however, the vertices in layer i and the edges between layers i-1 and i are only revealed when the searcher reaches layer i-1. The authors give upper and lower bounds on the competitive ratio of layered graph traversal algorithms. They give a deterministic online algorithm that is O(9w)-competitive on width-w graphs and prove that for no w can a deterministic online algorithm have a competitive ratio better than 2w/sup -2/ on width-w graphs. They prove that for all w, w/2 is a lower bound on the competitive ratio of any randomized online layered graph traversal algorithm. For traversing layered graphs consisting of w disjoint paths tied together at a common source, they give a randomized online algorithm with a competitive ratio of O(log w) and prove that this is optimal up to a constant factor.<>