使用MIN和MAX门完成多值函数的双分解

B. Steinbach, C. Lang
{"title":"使用MIN和MAX门完成多值函数的双分解","authors":"B. Steinbach, C. Lang","doi":"10.1109/ISMVL.2005.14","DOIUrl":null,"url":null,"abstract":"In this paper we apply the bi-decomposition on multivalued functions and restrict the decomposition to MIN and MAX gates. It is known from (A. Mishchenko et al., 2001) that the MIN and MAX bi-decomposition leads in general to small multi-level circuits, well understandable for humans. Unfortunately, there does not exist a MIN or MAX bi-decomposition for each multi-valued function. In this paper we close this gap by the MAX-MIN multi-decomposition. Experimental results show that our complete decomposition of a set of benchmarks requires approximately the same sum of gates and literals as the known incomplete approach and the number of logic levels could even be reduced in average by 20 percent.","PeriodicalId":340578,"journal":{"name":"35th International Symposium on Multiple-Valued Logic (ISMVL'05)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Complete bi-decomposition of multiple-valued functions using MIN and MAX gates\",\"authors\":\"B. Steinbach, C. Lang\",\"doi\":\"10.1109/ISMVL.2005.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply the bi-decomposition on multivalued functions and restrict the decomposition to MIN and MAX gates. It is known from (A. Mishchenko et al., 2001) that the MIN and MAX bi-decomposition leads in general to small multi-level circuits, well understandable for humans. Unfortunately, there does not exist a MIN or MAX bi-decomposition for each multi-valued function. In this paper we close this gap by the MAX-MIN multi-decomposition. Experimental results show that our complete decomposition of a set of benchmarks requires approximately the same sum of gates and literals as the known incomplete approach and the number of logic levels could even be reduced in average by 20 percent.\",\"PeriodicalId\":340578,\"journal\":{\"name\":\"35th International Symposium on Multiple-Valued Logic (ISMVL'05)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"35th International Symposium on Multiple-Valued Logic (ISMVL'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2005.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th International Symposium on Multiple-Valued Logic (ISMVL'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2005.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将双分解应用于多值函数,并将分解限制在最小门和最大门上。从(A. Mishchenko et al., 2001)可知,MIN和MAX双分解通常导致小型多级电路,对人类来说是很容易理解的。不幸的是,对于每个多值函数,不存在最小或最大双分解。在本文中,我们通过MAX-MIN多重分解来弥补这一差距。实验结果表明,我们对一组基准的完全分解所需的门和字面量的总和与已知的不完全方法大致相同,逻辑级别的数量甚至可以平均减少20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete bi-decomposition of multiple-valued functions using MIN and MAX gates
In this paper we apply the bi-decomposition on multivalued functions and restrict the decomposition to MIN and MAX gates. It is known from (A. Mishchenko et al., 2001) that the MIN and MAX bi-decomposition leads in general to small multi-level circuits, well understandable for humans. Unfortunately, there does not exist a MIN or MAX bi-decomposition for each multi-valued function. In this paper we close this gap by the MAX-MIN multi-decomposition. Experimental results show that our complete decomposition of a set of benchmarks requires approximately the same sum of gates and literals as the known incomplete approach and the number of logic levels could even be reduced in average by 20 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信