一种基于最大特征值的改进矩阵CFAR检测器用于海杂波下的目标检测

Wenjing Zhao, Minglu Jin, Wenlong Liu
{"title":"一种基于最大特征值的改进矩阵CFAR检测器用于海杂波下的目标检测","authors":"Wenjing Zhao, Minglu Jin, Wenlong Liu","doi":"10.1109/RADAR.2018.8378679","DOIUrl":null,"url":null,"abstract":"Riemannian distance based matrix constant false alarm rate (CFAR) detector under small number of pulses provides a novel mechanism for detecting radar targets against the background of sea clutter. However, the computational com­plexity of this detector is heavy. In this paper, using the maximum eigenvalue, we propose two blind algorithms for rank one signal. The proposed methods achieve high detection rates with low computational complexity in which the maximum eigenvalue is employed as the test statistic to modify the Riemannian method. Furthermore, the CFAR property is derived by the group invariant theory. The computational complexity is also analyzed and simulation results verify the effectiveness of the proposed detection methods.","PeriodicalId":379567,"journal":{"name":"2018 IEEE Radar Conference (RadarConf18)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A modified matrix CFAR detector based on maximum eigenvalue for target detection in the sea clutter\",\"authors\":\"Wenjing Zhao, Minglu Jin, Wenlong Liu\",\"doi\":\"10.1109/RADAR.2018.8378679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Riemannian distance based matrix constant false alarm rate (CFAR) detector under small number of pulses provides a novel mechanism for detecting radar targets against the background of sea clutter. However, the computational com­plexity of this detector is heavy. In this paper, using the maximum eigenvalue, we propose two blind algorithms for rank one signal. The proposed methods achieve high detection rates with low computational complexity in which the maximum eigenvalue is employed as the test statistic to modify the Riemannian method. Furthermore, the CFAR property is derived by the group invariant theory. The computational complexity is also analyzed and simulation results verify the effectiveness of the proposed detection methods.\",\"PeriodicalId\":379567,\"journal\":{\"name\":\"2018 IEEE Radar Conference (RadarConf18)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Radar Conference (RadarConf18)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2018.8378679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Radar Conference (RadarConf18)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2018.8378679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于距离的小脉冲矩阵恒虚警率(CFAR)检波器为海杂波背景下的雷达目标检测提供了一种新的机制。然而,这种检测器的计算复杂度很高。本文利用最大特征值,提出了两种一阶信号的盲算法。该方法采用最大特征值作为检验统计量对黎曼方法进行修正,具有较高的检测率和较低的计算复杂度。在此基础上,利用群不变理论推导出了CFAR的性质。分析了计算复杂度,仿真结果验证了所提检测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified matrix CFAR detector based on maximum eigenvalue for target detection in the sea clutter
Riemannian distance based matrix constant false alarm rate (CFAR) detector under small number of pulses provides a novel mechanism for detecting radar targets against the background of sea clutter. However, the computational com­plexity of this detector is heavy. In this paper, using the maximum eigenvalue, we propose two blind algorithms for rank one signal. The proposed methods achieve high detection rates with low computational complexity in which the maximum eigenvalue is employed as the test statistic to modify the Riemannian method. Furthermore, the CFAR property is derived by the group invariant theory. The computational complexity is also analyzed and simulation results verify the effectiveness of the proposed detection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信