二维到达方向估计的经验神经网络模型

M. Agatonovic, Z. Stanković, B. Milovanovic, L. Sit, T. Zwick
{"title":"二维到达方向估计的经验神经网络模型","authors":"M. Agatonovic, Z. Stanković, B. Milovanovic, L. Sit, T. Zwick","doi":"10.1109/NEUREL.2012.6419951","DOIUrl":null,"url":null,"abstract":"Empirical Artificial Neural Network (ANN) models are developed for Two-Dimensional Direction of Arrival (2D DOA) estimation of a source signal. For that purpose, experimental data obtained from measurements in an anechoic chamber are utilized. Performance of ANN models are compared to 2D MUSIC algorithm in regard to estimation accuracy and speed of calculations. It is demonstrated that the proposed models outperform MUSIC in cases when small number of snapshots are utilized for DOA estimation and at the same time, are more suitable for real-time implementation.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical ANN models for 2D direction of arrival estimation\",\"authors\":\"M. Agatonovic, Z. Stanković, B. Milovanovic, L. Sit, T. Zwick\",\"doi\":\"10.1109/NEUREL.2012.6419951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical Artificial Neural Network (ANN) models are developed for Two-Dimensional Direction of Arrival (2D DOA) estimation of a source signal. For that purpose, experimental data obtained from measurements in an anechoic chamber are utilized. Performance of ANN models are compared to 2D MUSIC algorithm in regard to estimation accuracy and speed of calculations. It is demonstrated that the proposed models outperform MUSIC in cases when small number of snapshots are utilized for DOA estimation and at the same time, are more suitable for real-time implementation.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6419951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对源信号的二维到达方向估计问题,建立了经验人工神经网络(ANN)模型。为此目的,利用在消声室中测量得到的实验数据。在估计精度和计算速度方面,比较了人工神经网络模型与二维MUSIC算法的性能。结果表明,在使用少量快照进行DOA估计的情况下,所提模型的性能优于MUSIC,同时更适合于实时实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical ANN models for 2D direction of arrival estimation
Empirical Artificial Neural Network (ANN) models are developed for Two-Dimensional Direction of Arrival (2D DOA) estimation of a source signal. For that purpose, experimental data obtained from measurements in an anechoic chamber are utilized. Performance of ANN models are compared to 2D MUSIC algorithm in regard to estimation accuracy and speed of calculations. It is demonstrated that the proposed models outperform MUSIC in cases when small number of snapshots are utilized for DOA estimation and at the same time, are more suitable for real-time implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信