{"title":"基于样本多样性和身份一致性的可见-红外人物再识别交叉模态模型","authors":"Jia Sun, Yanfeng Li, Houjin Chen, Yahui Peng","doi":"10.1117/12.2644355","DOIUrl":null,"url":null,"abstract":"Visible-infrared person re-identification (VI-ReID) aims to search person images across cameras of different modalities, which can address the limitation of visible-based ReID in dark environments. It is a very challenging task, as images of the same identity have huge discrepancy in different modalities. To address this problem, a cross-modality ReID model based on sample diversity and identity consistency is proposed in this paper. For sample diversity, auxiliary images are introduced based on the idea of information transfer. The auxiliary images combine the information of visible images and infrared images, and can improve the diversity of input data and robustness of the network. For identity consistency, homogeneous distance loss and heterogeneous distance loss are developed from four different perspectives to shorten the distance between the samples of same identities. Extensive experimental results demonstrate the effectiveness of the proposed method.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A sample diversity and identity consistency based cross-modality model for visible-infrared person re-identification\",\"authors\":\"Jia Sun, Yanfeng Li, Houjin Chen, Yahui Peng\",\"doi\":\"10.1117/12.2644355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible-infrared person re-identification (VI-ReID) aims to search person images across cameras of different modalities, which can address the limitation of visible-based ReID in dark environments. It is a very challenging task, as images of the same identity have huge discrepancy in different modalities. To address this problem, a cross-modality ReID model based on sample diversity and identity consistency is proposed in this paper. For sample diversity, auxiliary images are introduced based on the idea of information transfer. The auxiliary images combine the information of visible images and infrared images, and can improve the diversity of input data and robustness of the network. For identity consistency, homogeneous distance loss and heterogeneous distance loss are developed from four different perspectives to shorten the distance between the samples of same identities. Extensive experimental results demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":314555,\"journal\":{\"name\":\"International Conference on Digital Image Processing\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Digital Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2644355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sample diversity and identity consistency based cross-modality model for visible-infrared person re-identification
Visible-infrared person re-identification (VI-ReID) aims to search person images across cameras of different modalities, which can address the limitation of visible-based ReID in dark environments. It is a very challenging task, as images of the same identity have huge discrepancy in different modalities. To address this problem, a cross-modality ReID model based on sample diversity and identity consistency is proposed in this paper. For sample diversity, auxiliary images are introduced based on the idea of information transfer. The auxiliary images combine the information of visible images and infrared images, and can improve the diversity of input data and robustness of the network. For identity consistency, homogeneous distance loss and heterogeneous distance loss are developed from four different perspectives to shorten the distance between the samples of same identities. Extensive experimental results demonstrate the effectiveness of the proposed method.