使用激光雷达和深度学习技术的人类步态识别

Tzu-Chun Chiu, Tzung-Shi Chen, Jing-Mei Lin
{"title":"使用激光雷达和深度学习技术的人类步态识别","authors":"Tzu-Chun Chiu, Tzung-Shi Chen, Jing-Mei Lin","doi":"10.1109/ICCE-Taiwan55306.2022.9869258","DOIUrl":null,"url":null,"abstract":"This paper presents a system using Light Detection and Ranging (LiDAR) to sense the human gait, and training several deep learning models for gait recognition through the collected point cloud. Since the behavior of the human body is a continuous action, we choose deep learning architectures which deal with time-series data, Long Short-Term Memory (LSTM), Temporal Convolutional Network (TCN) and make the appropriate architecture combination to improve the accuracy of recognizing human gait.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Human Gait Recognition using LiDAR and Deep Learning Technologies\",\"authors\":\"Tzu-Chun Chiu, Tzung-Shi Chen, Jing-Mei Lin\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a system using Light Detection and Ranging (LiDAR) to sense the human gait, and training several deep learning models for gait recognition through the collected point cloud. Since the behavior of the human body is a continuous action, we choose deep learning architectures which deal with time-series data, Long Short-Term Memory (LSTM), Temporal Convolutional Network (TCN) and make the appropriate architecture combination to improve the accuracy of recognizing human gait.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种利用激光雷达(LiDAR)感知人体步态的系统,并通过采集的点云训练几种深度学习模型进行步态识别。由于人体的行为是一个连续的动作,我们选择处理时间序列数据的深度学习架构、长短期记忆(LSTM)、时间卷积网络(TCN),并进行适当的架构组合来提高人体步态识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Gait Recognition using LiDAR and Deep Learning Technologies
This paper presents a system using Light Detection and Ranging (LiDAR) to sense the human gait, and training several deep learning models for gait recognition through the collected point cloud. Since the behavior of the human body is a continuous action, we choose deep learning architectures which deal with time-series data, Long Short-Term Memory (LSTM), Temporal Convolutional Network (TCN) and make the appropriate architecture combination to improve the accuracy of recognizing human gait.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信