用机器学习将分子动力学从头算精度的极限推到1亿个原子

Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Jiduan Liu, Lin Lin, R. Car, E. Weinan, Linfeng Zhang
{"title":"用机器学习将分子动力学从头算精度的极限推到1亿个原子","authors":"Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Jiduan Liu, Lin Lin, R. Car, E. Weinan, Linfeng Zhang","doi":"10.1109/SC41405.2020.00009","DOIUrl":null,"url":null,"abstract":"For 35 years, ab initio molecular dynamics (AIMD) has been the method of choice for modeling complex atomistic phenomena from first principles. However, most AIMD applications are limited by computational cost to systems with thousands of atoms at most. We report that a machine learningbased simulation protocol (Deep Potential Molecular Dynamics), while retaining ab initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-single/half precision. The great accomplishment of this work is that it opens the door to simulating unprecedented size and time scales with ab initio accuracy. It also poses new challenges to the next-generation supercomputer for a better integration of machine learning and physical modeling.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning\",\"authors\":\"Weile Jia, Han Wang, Mohan Chen, Denghui Lu, Jiduan Liu, Lin Lin, R. Car, E. Weinan, Linfeng Zhang\",\"doi\":\"10.1109/SC41405.2020.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For 35 years, ab initio molecular dynamics (AIMD) has been the method of choice for modeling complex atomistic phenomena from first principles. However, most AIMD applications are limited by computational cost to systems with thousands of atoms at most. We report that a machine learningbased simulation protocol (Deep Potential Molecular Dynamics), while retaining ab initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-single/half precision. The great accomplishment of this work is that it opens the door to simulating unprecedented size and time scales with ab initio accuracy. It also poses new challenges to the next-generation supercomputer for a better integration of machine learning and physical modeling.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 145

摘要

35年来,从头算分子动力学(AIMD)一直是从第一性原理出发模拟复杂原子现象的首选方法。然而,大多数AIMD应用受到计算成本的限制,最多只能使用数千个原子的系统。我们报告说,基于机器学习的模拟协议(Deep Potential Molecular Dynamics),在保持从头算精度的同时,可以在Summit超级计算机上使用高度优化的代码(GPU DeePMD-kit),每天模拟超过1纳秒的超过1亿个原子的轨迹。我们的代码可以有效地扩展到整个Summit超级计算机,双精度达到91 PFLOPS(峰值的45.5%),混合单精度/半精度达到162/275 PFLOPS。这项工作的伟大成就是,它打开了以从头算的精度模拟前所未有的大小和时间尺度的大门。这也为下一代超级计算机更好地整合机器学习和物理建模提出了新的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning
For 35 years, ab initio molecular dynamics (AIMD) has been the method of choice for modeling complex atomistic phenomena from first principles. However, most AIMD applications are limited by computational cost to systems with thousands of atoms at most. We report that a machine learningbased simulation protocol (Deep Potential Molecular Dynamics), while retaining ab initio accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire Summit supercomputer, attaining 91 PFLOPS in double precision (45.5% of the peak) and 162/275 PFLOPS in mixed-single/half precision. The great accomplishment of this work is that it opens the door to simulating unprecedented size and time scales with ab initio accuracy. It also poses new challenges to the next-generation supercomputer for a better integration of machine learning and physical modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信