通过偏序和互补性约束量子容量

C. Hirche, Felix Leditzky
{"title":"通过偏序和互补性约束量子容量","authors":"C. Hirche, Felix Leditzky","doi":"10.1109/ISIT50566.2022.9834698","DOIUrl":null,"url":null,"abstract":"Quantum capacities are fundamental quantities that are notoriously hard to compute and can exhibit surprising properties such as superadditivity. Thus a vast amount of literature is devoted to finding close and computable bounds on these capacities. We add a new viewpoint by giving operationally motivated bounds on several capacities, including the quantum capacity and private capacity of a channel and the one-way distillable entanglement and private key of a bipartite state. Our bounds themselves are generally given by certain capacities of the complementary channel or state. As a tool to obtain these bounds we discuss partial orders on quantum channels, such as the less noisy and the more capable order. Our bounds help to further understand the interplay between different capacities and give operational limitations on superadditivity properties and the difference between capacities. They can also be used as a new approach towards numerically bounding capacities, as discussed with some examples.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Bounding quantum capacities via partial orders and complementarity\",\"authors\":\"C. Hirche, Felix Leditzky\",\"doi\":\"10.1109/ISIT50566.2022.9834698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum capacities are fundamental quantities that are notoriously hard to compute and can exhibit surprising properties such as superadditivity. Thus a vast amount of literature is devoted to finding close and computable bounds on these capacities. We add a new viewpoint by giving operationally motivated bounds on several capacities, including the quantum capacity and private capacity of a channel and the one-way distillable entanglement and private key of a bipartite state. Our bounds themselves are generally given by certain capacities of the complementary channel or state. As a tool to obtain these bounds we discuss partial orders on quantum channels, such as the less noisy and the more capable order. Our bounds help to further understand the interplay between different capacities and give operational limitations on superadditivity properties and the difference between capacities. They can also be used as a new approach towards numerically bounding capacities, as discussed with some examples.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

量子容量是出了名的难以计算的基本量,并且可以表现出惊人的特性,比如超可加性。因此,大量的文献致力于寻找这些能力的密切和可计算的界限。我们通过对信道的量子容量和私有容量以及双部态的单向可蒸馏纠缠和私钥等容量给出操作激励边界,增加了一个新的观点。我们的边界本身通常是由互补通道或状态的某些容量给出的。作为一种获得这些边界的工具,我们讨论了量子信道上的偏阶,例如噪声较小的阶和能力较强的阶。我们的界有助于进一步理解不同容量之间的相互作用,并给出超可加性性质的运算限制和容量之间的差异。它们也可以用作实现数值边界能力的新方法,如一些示例所讨论的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding quantum capacities via partial orders and complementarity
Quantum capacities are fundamental quantities that are notoriously hard to compute and can exhibit surprising properties such as superadditivity. Thus a vast amount of literature is devoted to finding close and computable bounds on these capacities. We add a new viewpoint by giving operationally motivated bounds on several capacities, including the quantum capacity and private capacity of a channel and the one-way distillable entanglement and private key of a bipartite state. Our bounds themselves are generally given by certain capacities of the complementary channel or state. As a tool to obtain these bounds we discuss partial orders on quantum channels, such as the less noisy and the more capable order. Our bounds help to further understand the interplay between different capacities and give operational limitations on superadditivity properties and the difference between capacities. They can also be used as a new approach towards numerically bounding capacities, as discussed with some examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信