深度学习的特征空间及其重要性:ML-ELM扩展空间上聚类技术的比较

R. Roul, Amit Agarwal
{"title":"深度学习的特征空间及其重要性:ML-ELM扩展空间上聚类技术的比较","authors":"R. Roul, Amit Agarwal","doi":"10.1145/3158354.3158359","DOIUrl":null,"url":null,"abstract":"Based on the architecture of deep learning, Multilayer Extreme Learning Machine (ML-ELM) has many good characteristics which make it distinct and widespread classifier in the domain of text mining. Some of its salient features include non-linear mapping of features into a high dimensional space, high level of data abstraction, no backpropagation, higher rate of learning etc. This paper studies the importance of ML-ELM feature space and tested the performance of various traditional clustering techniques on this feature space. Empirical results show the efficiency and effectiveness of the feature space of ML-ELM compared to TF-IDF vector space which justifies the prominence of deep learning.","PeriodicalId":306212,"journal":{"name":"Proceedings of the 9th Annual Meeting of the Forum for Information Retrieval Evaluation","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feature Space of Deep Learning and its Importance: Comparison of Clustering Techniques on the Extended Space of ML-ELM\",\"authors\":\"R. Roul, Amit Agarwal\",\"doi\":\"10.1145/3158354.3158359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the architecture of deep learning, Multilayer Extreme Learning Machine (ML-ELM) has many good characteristics which make it distinct and widespread classifier in the domain of text mining. Some of its salient features include non-linear mapping of features into a high dimensional space, high level of data abstraction, no backpropagation, higher rate of learning etc. This paper studies the importance of ML-ELM feature space and tested the performance of various traditional clustering techniques on this feature space. Empirical results show the efficiency and effectiveness of the feature space of ML-ELM compared to TF-IDF vector space which justifies the prominence of deep learning.\",\"PeriodicalId\":306212,\"journal\":{\"name\":\"Proceedings of the 9th Annual Meeting of the Forum for Information Retrieval Evaluation\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th Annual Meeting of the Forum for Information Retrieval Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3158354.3158359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Annual Meeting of the Forum for Information Retrieval Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3158354.3158359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于深度学习体系结构的多层极限学习机(ML-ELM)具有许多良好的特性,使其在文本挖掘领域具有独特的应用前景。它的一些显著特征包括特征到高维空间的非线性映射、高水平的数据抽象、无反向传播、更高的学习速率等。本文研究了ML-ELM特征空间的重要性,并测试了各种传统聚类技术在该特征空间上的性能。实证结果表明,与TF-IDF向量空间相比,ML-ELM特征空间的效率和有效性证明了深度学习的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Space of Deep Learning and its Importance: Comparison of Clustering Techniques on the Extended Space of ML-ELM
Based on the architecture of deep learning, Multilayer Extreme Learning Machine (ML-ELM) has many good characteristics which make it distinct and widespread classifier in the domain of text mining. Some of its salient features include non-linear mapping of features into a high dimensional space, high level of data abstraction, no backpropagation, higher rate of learning etc. This paper studies the importance of ML-ELM feature space and tested the performance of various traditional clustering techniques on this feature space. Empirical results show the efficiency and effectiveness of the feature space of ML-ELM compared to TF-IDF vector space which justifies the prominence of deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信