基于核- dmcca融合的判别鲁棒凝视估计

Salah Rabba, M. Kyan, Lei Gao, A. Quddus, A. S. Zandi, L. Guan
{"title":"基于核- dmcca融合的判别鲁棒凝视估计","authors":"Salah Rabba, M. Kyan, Lei Gao, A. Quddus, A. S. Zandi, L. Guan","doi":"10.1109/ISM.2018.00064","DOIUrl":null,"url":null,"abstract":"The proposed framework employs discriminative analysis for gaze estimation using kernel discriminative multiple canonical correlation analysis (K-DMCCA), which represents different feature vectors that account for variations of head pose, illumination and occlusion. The feature extraction component of the framework includes spatial indexing, statistical and geometrical elements. Gaze estimation is constructed by feature aggregation and transforming features into a higher dimensional space using the RBF kernel ���� and spread factor. The output of fused features through K-DMCCA is robust to illumination, occlusion and is calibration free. Our algorithm is validated on MPII, CAVE, ACS and EYEDIAP datasets. The two main contributions of the framework are the following: Enhancing the performance of DMCCA with the kernel and introducing quadtree as an iris region descriptor. Spatial indexing using quadtree is a robust method for detecting which quadrant the iris is situated, detecting the iris boundary and it is inclusive of statistical and geometrical indexing that are calibration free. Our method achieved an accurate gaze estimation of 4.8º using Cave, 4.6° using MPII, 5.1º using ACS and 5.9° using EYEDIAP datasets respectively. The proposed framework provides insight into the methodology of multi-feature fusion for gaze estimation.","PeriodicalId":308698,"journal":{"name":"2018 IEEE International Symposium on Multimedia (ISM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discriminative Robust Gaze Estimation Using Kernel-DMCCA Fusion\",\"authors\":\"Salah Rabba, M. Kyan, Lei Gao, A. Quddus, A. S. Zandi, L. Guan\",\"doi\":\"10.1109/ISM.2018.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed framework employs discriminative analysis for gaze estimation using kernel discriminative multiple canonical correlation analysis (K-DMCCA), which represents different feature vectors that account for variations of head pose, illumination and occlusion. The feature extraction component of the framework includes spatial indexing, statistical and geometrical elements. Gaze estimation is constructed by feature aggregation and transforming features into a higher dimensional space using the RBF kernel ���� and spread factor. The output of fused features through K-DMCCA is robust to illumination, occlusion and is calibration free. Our algorithm is validated on MPII, CAVE, ACS and EYEDIAP datasets. The two main contributions of the framework are the following: Enhancing the performance of DMCCA with the kernel and introducing quadtree as an iris region descriptor. Spatial indexing using quadtree is a robust method for detecting which quadrant the iris is situated, detecting the iris boundary and it is inclusive of statistical and geometrical indexing that are calibration free. Our method achieved an accurate gaze estimation of 4.8º using Cave, 4.6° using MPII, 5.1º using ACS and 5.9° using EYEDIAP datasets respectively. The proposed framework provides insight into the methodology of multi-feature fusion for gaze estimation.\",\"PeriodicalId\":308698,\"journal\":{\"name\":\"2018 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2018.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2018.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

该框架采用判别分析方法,利用核判别多重典型相关分析(K-DMCCA)进行凝视估计,该方法代表了考虑头部姿势、光照和遮挡变化的不同特征向量。该框架的特征提取部分包括空间索引、统计元素和几何元素。注视估计是通过特征聚合,利用RBF核和扩展因子将特征变换到高维空间来实现的。通过K-DMCCA输出的融合特征对光照、遮挡具有鲁棒性,且无需校准。在MPII、CAVE、ACS和EYEDIAP数据集上对算法进行了验证。该框架的两个主要贡献是:利用核提高DMCCA的性能,并引入四叉树作为虹膜区域描述符。四叉树空间标引是一种检测虹膜所在象限、检测虹膜边界的鲁棒方法,它包含了不需要标定的统计和几何标引。使用Cave、MPII、ACS和EYEDIAP数据集分别实现了4.8º、4.6°、5.1º和5.9°的准确凝视估计。该框架提供了对多特征融合注视估计方法的深入了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative Robust Gaze Estimation Using Kernel-DMCCA Fusion
The proposed framework employs discriminative analysis for gaze estimation using kernel discriminative multiple canonical correlation analysis (K-DMCCA), which represents different feature vectors that account for variations of head pose, illumination and occlusion. The feature extraction component of the framework includes spatial indexing, statistical and geometrical elements. Gaze estimation is constructed by feature aggregation and transforming features into a higher dimensional space using the RBF kernel ���� and spread factor. The output of fused features through K-DMCCA is robust to illumination, occlusion and is calibration free. Our algorithm is validated on MPII, CAVE, ACS and EYEDIAP datasets. The two main contributions of the framework are the following: Enhancing the performance of DMCCA with the kernel and introducing quadtree as an iris region descriptor. Spatial indexing using quadtree is a robust method for detecting which quadrant the iris is situated, detecting the iris boundary and it is inclusive of statistical and geometrical indexing that are calibration free. Our method achieved an accurate gaze estimation of 4.8º using Cave, 4.6° using MPII, 5.1º using ACS and 5.9° using EYEDIAP datasets respectively. The proposed framework provides insight into the methodology of multi-feature fusion for gaze estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信