K. Gillette, A. Prassl, J. Bayer, E. Vigmond, A. Neic, G. Plank
{"title":"自动生成的双心室模型的心脏电生理的病人具体个性化使用无创记录","authors":"K. Gillette, A. Prassl, J. Bayer, E. Vigmond, A. Neic, G. Plank","doi":"10.22489/CinC.2018.265","DOIUrl":null,"url":null,"abstract":"Introduction: Personalized in silico models of cardiac electrophysiology based on non-invasive recordings, such as body surface potential maps, are considered of pivotal importance in clinical modeling applications. Efficient, automated workflows are desired to construct patientspecific models for clinical use. Objective: We aimed to develop an automated workflow for the generation of a parameterizable cardiac EP model capable of simulating body surface potential maps independent of user interaction. Methods: A cardiac bi-ventricular model with torso was segmented and meshed from clinical MRI scans. Universal ventricular coordinates were computed for userindependent definition of fibers, a fast conducting endocardial layer, and earliest activation on the endocardium. The extracellular epicardial potential distribution was simulated and projected to the torso surface to acquire a body surface potential map. Results: Total model generation from segmentation required approximately 2 hours. Automatized simulation of a single depolarization sequence required approximately 30 minutes using a forward element method implementation. Discussion: The proposed workflow integrated recentlydeveloped technologies to generate a parameterizable cardiac EP model within clinical time scales.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic Generation of Bi-Ventricular Models of Cardiac Electrophysiology for Patient Specific Personalization Using Non-Invasive Recordings\",\"authors\":\"K. Gillette, A. Prassl, J. Bayer, E. Vigmond, A. Neic, G. Plank\",\"doi\":\"10.22489/CinC.2018.265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Personalized in silico models of cardiac electrophysiology based on non-invasive recordings, such as body surface potential maps, are considered of pivotal importance in clinical modeling applications. Efficient, automated workflows are desired to construct patientspecific models for clinical use. Objective: We aimed to develop an automated workflow for the generation of a parameterizable cardiac EP model capable of simulating body surface potential maps independent of user interaction. Methods: A cardiac bi-ventricular model with torso was segmented and meshed from clinical MRI scans. Universal ventricular coordinates were computed for userindependent definition of fibers, a fast conducting endocardial layer, and earliest activation on the endocardium. The extracellular epicardial potential distribution was simulated and projected to the torso surface to acquire a body surface potential map. Results: Total model generation from segmentation required approximately 2 hours. Automatized simulation of a single depolarization sequence required approximately 30 minutes using a forward element method implementation. Discussion: The proposed workflow integrated recentlydeveloped technologies to generate a parameterizable cardiac EP model within clinical time scales.\",\"PeriodicalId\":215521,\"journal\":{\"name\":\"2018 Computing in Cardiology Conference (CinC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2018.265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Generation of Bi-Ventricular Models of Cardiac Electrophysiology for Patient Specific Personalization Using Non-Invasive Recordings
Introduction: Personalized in silico models of cardiac electrophysiology based on non-invasive recordings, such as body surface potential maps, are considered of pivotal importance in clinical modeling applications. Efficient, automated workflows are desired to construct patientspecific models for clinical use. Objective: We aimed to develop an automated workflow for the generation of a parameterizable cardiac EP model capable of simulating body surface potential maps independent of user interaction. Methods: A cardiac bi-ventricular model with torso was segmented and meshed from clinical MRI scans. Universal ventricular coordinates were computed for userindependent definition of fibers, a fast conducting endocardial layer, and earliest activation on the endocardium. The extracellular epicardial potential distribution was simulated and projected to the torso surface to acquire a body surface potential map. Results: Total model generation from segmentation required approximately 2 hours. Automatized simulation of a single depolarization sequence required approximately 30 minutes using a forward element method implementation. Discussion: The proposed workflow integrated recentlydeveloped technologies to generate a parameterizable cardiac EP model within clinical time scales.