自动生成的双心室模型的心脏电生理的病人具体个性化使用无创记录

K. Gillette, A. Prassl, J. Bayer, E. Vigmond, A. Neic, G. Plank
{"title":"自动生成的双心室模型的心脏电生理的病人具体个性化使用无创记录","authors":"K. Gillette, A. Prassl, J. Bayer, E. Vigmond, A. Neic, G. Plank","doi":"10.22489/CinC.2018.265","DOIUrl":null,"url":null,"abstract":"Introduction: Personalized in silico models of cardiac electrophysiology based on non-invasive recordings, such as body surface potential maps, are considered of pivotal importance in clinical modeling applications. Efficient, automated workflows are desired to construct patientspecific models for clinical use. Objective: We aimed to develop an automated workflow for the generation of a parameterizable cardiac EP model capable of simulating body surface potential maps independent of user interaction. Methods: A cardiac bi-ventricular model with torso was segmented and meshed from clinical MRI scans. Universal ventricular coordinates were computed for userindependent definition of fibers, a fast conducting endocardial layer, and earliest activation on the endocardium. The extracellular epicardial potential distribution was simulated and projected to the torso surface to acquire a body surface potential map. Results: Total model generation from segmentation required approximately 2 hours. Automatized simulation of a single depolarization sequence required approximately 30 minutes using a forward element method implementation. Discussion: The proposed workflow integrated recentlydeveloped technologies to generate a parameterizable cardiac EP model within clinical time scales.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic Generation of Bi-Ventricular Models of Cardiac Electrophysiology for Patient Specific Personalization Using Non-Invasive Recordings\",\"authors\":\"K. Gillette, A. Prassl, J. Bayer, E. Vigmond, A. Neic, G. Plank\",\"doi\":\"10.22489/CinC.2018.265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Personalized in silico models of cardiac electrophysiology based on non-invasive recordings, such as body surface potential maps, are considered of pivotal importance in clinical modeling applications. Efficient, automated workflows are desired to construct patientspecific models for clinical use. Objective: We aimed to develop an automated workflow for the generation of a parameterizable cardiac EP model capable of simulating body surface potential maps independent of user interaction. Methods: A cardiac bi-ventricular model with torso was segmented and meshed from clinical MRI scans. Universal ventricular coordinates were computed for userindependent definition of fibers, a fast conducting endocardial layer, and earliest activation on the endocardium. The extracellular epicardial potential distribution was simulated and projected to the torso surface to acquire a body surface potential map. Results: Total model generation from segmentation required approximately 2 hours. Automatized simulation of a single depolarization sequence required approximately 30 minutes using a forward element method implementation. Discussion: The proposed workflow integrated recentlydeveloped technologies to generate a parameterizable cardiac EP model within clinical time scales.\",\"PeriodicalId\":215521,\"journal\":{\"name\":\"2018 Computing in Cardiology Conference (CinC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2018.265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于非侵入性记录(如体表电位图)的个性化心脏电生理计算机模型被认为在临床建模应用中具有关键重要性。高效、自动化的工作流程需要构建用于临床使用的患者特定模型。目的:我们旨在开发一个自动化的工作流,用于生成一个可参数化的心脏电位模型,该模型能够模拟独立于用户交互的体表电位图。方法:对临床MRI扫描的心脏双室模型进行分割和网格化处理。计算了通用心室坐标,用于独立于用户的纤维定义,快速传导的心内膜层,以及在心内膜上最早的激活。模拟细胞外心外膜电位分布,并将其投射到躯干表面,获得体表电位图。结果:从分割中生成的总模型大约需要2小时。使用正演元方法实现单个去极化序列的自动化模拟大约需要30分钟。讨论:提出的工作流程集成了最近开发的技术,以在临床时间尺度内生成可参数化的心脏EP模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Generation of Bi-Ventricular Models of Cardiac Electrophysiology for Patient Specific Personalization Using Non-Invasive Recordings
Introduction: Personalized in silico models of cardiac electrophysiology based on non-invasive recordings, such as body surface potential maps, are considered of pivotal importance in clinical modeling applications. Efficient, automated workflows are desired to construct patientspecific models for clinical use. Objective: We aimed to develop an automated workflow for the generation of a parameterizable cardiac EP model capable of simulating body surface potential maps independent of user interaction. Methods: A cardiac bi-ventricular model with torso was segmented and meshed from clinical MRI scans. Universal ventricular coordinates were computed for userindependent definition of fibers, a fast conducting endocardial layer, and earliest activation on the endocardium. The extracellular epicardial potential distribution was simulated and projected to the torso surface to acquire a body surface potential map. Results: Total model generation from segmentation required approximately 2 hours. Automatized simulation of a single depolarization sequence required approximately 30 minutes using a forward element method implementation. Discussion: The proposed workflow integrated recentlydeveloped technologies to generate a parameterizable cardiac EP model within clinical time scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信