自动补丁生成修复ATL转换规则中的语义错误

Zahra VaraminyBahnemiry, Jessie Galasso, Khalid Belharbi, H. Sahraoui
{"title":"自动补丁生成修复ATL转换规则中的语义错误","authors":"Zahra VaraminyBahnemiry, Jessie Galasso, Khalid Belharbi, H. Sahraoui","doi":"10.1109/MODELS50736.2021.00011","DOIUrl":null,"url":null,"abstract":"With the growing popularity of the MDE paradigm, model transformations are becoming more and more complex. ATL transformations, in particular, are error-prone due to the declarative nature of the language and the dependency towards the involved metamodels. To alleviate the burden of developers, we propose, in this paper, an approach for fixing semantic errors in ATL transformation rules without predefined patch templates for specific error types. In a first step, our approach determines the rules that are likely to contain errors starting from the discrepancy between the expected and produced outputs of test cases. Then, a second step allows to generate candidate patches for these errors using a multiobjective optimization algorithm, guided by the same test cases. In a preliminary evaluation, we show that our approach can fix most of the errors for transformations with one or two errors. For those with multiple errors, more iterations are necessary to fix some of the errors.","PeriodicalId":375828,"journal":{"name":"2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Patch Generation for Fixing Semantic Errors in ATL Transformation Rules\",\"authors\":\"Zahra VaraminyBahnemiry, Jessie Galasso, Khalid Belharbi, H. Sahraoui\",\"doi\":\"10.1109/MODELS50736.2021.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing popularity of the MDE paradigm, model transformations are becoming more and more complex. ATL transformations, in particular, are error-prone due to the declarative nature of the language and the dependency towards the involved metamodels. To alleviate the burden of developers, we propose, in this paper, an approach for fixing semantic errors in ATL transformation rules without predefined patch templates for specific error types. In a first step, our approach determines the rules that are likely to contain errors starting from the discrepancy between the expected and produced outputs of test cases. Then, a second step allows to generate candidate patches for these errors using a multiobjective optimization algorithm, guided by the same test cases. In a preliminary evaluation, we show that our approach can fix most of the errors for transformations with one or two errors. For those with multiple errors, more iterations are necessary to fix some of the errors.\",\"PeriodicalId\":375828,\"journal\":{\"name\":\"2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MODELS50736.2021.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE 24th International Conference on Model Driven Engineering Languages and Systems (MODELS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODELS50736.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着MDE范式的日益普及,模型转换变得越来越复杂。由于语言的声明性和对所涉及元模型的依赖性,ATL转换尤其容易出错。为了减轻开发人员的负担,我们在本文中提出了一种修复ATL转换规则中的语义错误的方法,而不需要为特定错误类型预定义补丁模板。在第一步中,我们的方法确定了可能包含错误的规则,这些错误来自于测试用例的预期和产生的输出之间的差异。然后,第二步允许使用多目标优化算法为这些错误生成候选补丁,由相同的测试用例指导。在初步评估中,我们展示了我们的方法可以用一个或两个错误修复转换的大多数错误。对于那些有多个错误的,需要更多的迭代来修复一些错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Patch Generation for Fixing Semantic Errors in ATL Transformation Rules
With the growing popularity of the MDE paradigm, model transformations are becoming more and more complex. ATL transformations, in particular, are error-prone due to the declarative nature of the language and the dependency towards the involved metamodels. To alleviate the burden of developers, we propose, in this paper, an approach for fixing semantic errors in ATL transformation rules without predefined patch templates for specific error types. In a first step, our approach determines the rules that are likely to contain errors starting from the discrepancy between the expected and produced outputs of test cases. Then, a second step allows to generate candidate patches for these errors using a multiobjective optimization algorithm, guided by the same test cases. In a preliminary evaluation, we show that our approach can fix most of the errors for transformations with one or two errors. For those with multiple errors, more iterations are necessary to fix some of the errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信