为复杂的脚本改编Tesseract:以乌尔都语Nastalique为例

Q. Akram, S. Hussain, A. Niazi, Umair Anjum, Faheem Irfan
{"title":"为复杂的脚本改编Tesseract:以乌尔都语Nastalique为例","authors":"Q. Akram, S. Hussain, A. Niazi, Umair Anjum, Faheem Irfan","doi":"10.1109/DAS.2014.45","DOIUrl":null,"url":null,"abstract":"Tesseract engine supports multilingual text recognition. However, the recognition of cursive scripts using Tesseract is a challenging task. In this paper, Tesseract engine is analyzed and modified for the recognition of Nastalique writing style for Urdu language which is a very complex and cursive writing style of Arabic script. Original Tesseract system has 65.59% and 65.84% accuracies for 14 and 16 font sizes respectively, whereas the modified system, with reduced search space, gives 97.87% and 97.71% accuracies respectively. The efficiency is also improved from an average of 170 milliseconds (ms) to an average of 84 ms for the recognition of Nastalique document images.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Adapting Tesseract for Complex Scripts: An Example for Urdu Nastalique\",\"authors\":\"Q. Akram, S. Hussain, A. Niazi, Umair Anjum, Faheem Irfan\",\"doi\":\"10.1109/DAS.2014.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tesseract engine supports multilingual text recognition. However, the recognition of cursive scripts using Tesseract is a challenging task. In this paper, Tesseract engine is analyzed and modified for the recognition of Nastalique writing style for Urdu language which is a very complex and cursive writing style of Arabic script. Original Tesseract system has 65.59% and 65.84% accuracies for 14 and 16 font sizes respectively, whereas the modified system, with reduced search space, gives 97.87% and 97.71% accuracies respectively. The efficiency is also improved from an average of 170 milliseconds (ms) to an average of 84 ms for the recognition of Nastalique document images.\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

Tesseract引擎支持多语言文本识别。然而,使用Tesseract识别草书是一项具有挑战性的任务。乌尔都语是一种非常复杂的阿拉伯文草书体,本文对Tesseract引擎进行了分析和改进,用于乌尔都语Nastalique书写体的识别。原始Tesseract系统在14和16种字体大小下的准确率分别为65.59%和65.84%,而改进后的系统在缩小搜索空间后的准确率分别为97.87%和97.71%。对于Nastalique文档图像的识别,效率也从平均170毫秒(ms)提高到平均84毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting Tesseract for Complex Scripts: An Example for Urdu Nastalique
Tesseract engine supports multilingual text recognition. However, the recognition of cursive scripts using Tesseract is a challenging task. In this paper, Tesseract engine is analyzed and modified for the recognition of Nastalique writing style for Urdu language which is a very complex and cursive writing style of Arabic script. Original Tesseract system has 65.59% and 65.84% accuracies for 14 and 16 font sizes respectively, whereas the modified system, with reduced search space, gives 97.87% and 97.71% accuracies respectively. The efficiency is also improved from an average of 170 milliseconds (ms) to an average of 84 ms for the recognition of Nastalique document images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信