有理函数的Mahler离散残数与可和性

Carlos E. Arreche, Yi Zhang
{"title":"有理函数的Mahler离散残数与可和性","authors":"Carlos E. Arreche, Yi Zhang","doi":"10.1145/3476446.3536186","DOIUrl":null,"url":null,"abstract":"We construct Mahler discrete residues for rational functions and show that they comprise a complete obstruction to the Mahler summability problem of deciding whether a given rational function $f(x)$ is of the form $g(x^p)-g(x)$ for some rational function $g(x)$ and an integer $p > 1$. This extends to the Mahler case the analogous notions, properties, and applications of discrete residues (in the shift case) and q-discrete residues (in the q-difference case) developed by Chen and Singer. Along the way we define several additional notions that promise to be useful for addressing related questions involving Mahler difference fields of rational functions, including in particular telescoping problems and problems in the (differential) Galois theory of Mahler difference equations.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mahler Discrete Residues and Summability for Rational Functions\",\"authors\":\"Carlos E. Arreche, Yi Zhang\",\"doi\":\"10.1145/3476446.3536186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct Mahler discrete residues for rational functions and show that they comprise a complete obstruction to the Mahler summability problem of deciding whether a given rational function $f(x)$ is of the form $g(x^p)-g(x)$ for some rational function $g(x)$ and an integer $p > 1$. This extends to the Mahler case the analogous notions, properties, and applications of discrete residues (in the shift case) and q-discrete residues (in the q-difference case) developed by Chen and Singer. Along the way we define several additional notions that promise to be useful for addressing related questions involving Mahler difference fields of rational functions, including in particular telescoping problems and problems in the (differential) Galois theory of Mahler difference equations.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3536186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们构造了有理函数的马勒离散残数,并证明了它们构成了马勒可和性问题的一个完全障碍,即判定给定有理函数$f(x)$是否为有理函数$g(x)$和整数$p > 1$的形式$g(x) -g(x)$。这将由Chen和Singer提出的离散残数(在移位情况下)和q离散残数(在q差分情况下)的类似概念、性质和应用扩展到Mahler情况。在此过程中,我们定义了几个额外的概念,这些概念有望用于解决涉及马勒差分函数域的相关问题,特别是包括伸缩问题和马勒差分方程(微分)伽罗瓦理论中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mahler Discrete Residues and Summability for Rational Functions
We construct Mahler discrete residues for rational functions and show that they comprise a complete obstruction to the Mahler summability problem of deciding whether a given rational function $f(x)$ is of the form $g(x^p)-g(x)$ for some rational function $g(x)$ and an integer $p > 1$. This extends to the Mahler case the analogous notions, properties, and applications of discrete residues (in the shift case) and q-discrete residues (in the q-difference case) developed by Chen and Singer. Along the way we define several additional notions that promise to be useful for addressing related questions involving Mahler difference fields of rational functions, including in particular telescoping problems and problems in the (differential) Galois theory of Mahler difference equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信