{"title":"预测并行应用程序的性能和功耗","authors":"D. D. Sensi","doi":"10.1109/PDP.2016.41","DOIUrl":null,"url":null,"abstract":"Current architectures provide many control knobs for the reduction of power consumption of applications, like reducing the number of used cores or scaling down their frequency. However, choosing the right values for these knobs in order to satisfy requirements on performance and/or power consumption is a complex task and trying all the possible combinations of these values is an unfeasible solution since it would require too much time. For this reasons, there is the need for techniques that allow an accurate estimation of the performance and power consumption of an application when a specific configuration of the control knobs values is used. Usually, this is done by executing the application with different configurations and by using these information to predict its behaviour when the values of the knobs are changed. However, since this is a time consuming process, we would like to execute the application in the fewest number of configurations possible. In this work, we consider as control knobs the number of cores used by the application and the frequency of these cores. We show that on most Parsec benchmark programs, by executing the application in 1% of the total possible configurations and by applying a multiple linear regression model we are able to achieve an average accuracy of 96% in predicting its execution time and power consumption in all the other possible knobs combinations.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Predicting Performance and Power Consumption of Parallel Applications\",\"authors\":\"D. D. Sensi\",\"doi\":\"10.1109/PDP.2016.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current architectures provide many control knobs for the reduction of power consumption of applications, like reducing the number of used cores or scaling down their frequency. However, choosing the right values for these knobs in order to satisfy requirements on performance and/or power consumption is a complex task and trying all the possible combinations of these values is an unfeasible solution since it would require too much time. For this reasons, there is the need for techniques that allow an accurate estimation of the performance and power consumption of an application when a specific configuration of the control knobs values is used. Usually, this is done by executing the application with different configurations and by using these information to predict its behaviour when the values of the knobs are changed. However, since this is a time consuming process, we would like to execute the application in the fewest number of configurations possible. In this work, we consider as control knobs the number of cores used by the application and the frequency of these cores. We show that on most Parsec benchmark programs, by executing the application in 1% of the total possible configurations and by applying a multiple linear regression model we are able to achieve an average accuracy of 96% in predicting its execution time and power consumption in all the other possible knobs combinations.\",\"PeriodicalId\":192273,\"journal\":{\"name\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2016.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Performance and Power Consumption of Parallel Applications
Current architectures provide many control knobs for the reduction of power consumption of applications, like reducing the number of used cores or scaling down their frequency. However, choosing the right values for these knobs in order to satisfy requirements on performance and/or power consumption is a complex task and trying all the possible combinations of these values is an unfeasible solution since it would require too much time. For this reasons, there is the need for techniques that allow an accurate estimation of the performance and power consumption of an application when a specific configuration of the control knobs values is used. Usually, this is done by executing the application with different configurations and by using these information to predict its behaviour when the values of the knobs are changed. However, since this is a time consuming process, we would like to execute the application in the fewest number of configurations possible. In this work, we consider as control knobs the number of cores used by the application and the frequency of these cores. We show that on most Parsec benchmark programs, by executing the application in 1% of the total possible configurations and by applying a multiple linear regression model we are able to achieve an average accuracy of 96% in predicting its execution time and power consumption in all the other possible knobs combinations.