基于混合双正交小波OCSVM模型的资产质量检测研究

Huang Chao, Jiang Hongyan, Han Tingting
{"title":"基于混合双正交小波OCSVM模型的资产质量检测研究","authors":"Huang Chao, Jiang Hongyan, Han Tingting","doi":"10.1109/GCIS.2013.27","DOIUrl":null,"url":null,"abstract":"Asset quality is the foundation of enterprise survival and development we choose one-class support vector machine (OCSVM) is chosen to deal with asset quality abnormal detection for it pays great roles to acquire the abnormal data. As well as flexible to be constructed, Biorthogonal wavelet consists linear-phase nature and high vanishing moment, therefore, corresponding wavelet kernel functions are respectively constructed relying on Bior (2, 2) and Bior (3, 9) wavelet. On the basis of which new hybrid kernel is proposed and then introduced to OCSVM to innovate the model. In addition, it is applied into kernel principal component analysis (KPCA) method to realize a high dimension space mapping and enforce dimension reduction. Empirical research on A-share listed manufacturing enterprises at last is conducted and the result tells that the model we come up with is greatly improved on the recognition rate of abnormal samples when compared with other method.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Asset Quality Detection Based on Hybrid Biorthogonal Wavelet OCSVM Model\",\"authors\":\"Huang Chao, Jiang Hongyan, Han Tingting\",\"doi\":\"10.1109/GCIS.2013.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asset quality is the foundation of enterprise survival and development we choose one-class support vector machine (OCSVM) is chosen to deal with asset quality abnormal detection for it pays great roles to acquire the abnormal data. As well as flexible to be constructed, Biorthogonal wavelet consists linear-phase nature and high vanishing moment, therefore, corresponding wavelet kernel functions are respectively constructed relying on Bior (2, 2) and Bior (3, 9) wavelet. On the basis of which new hybrid kernel is proposed and then introduced to OCSVM to innovate the model. In addition, it is applied into kernel principal component analysis (KPCA) method to realize a high dimension space mapping and enforce dimension reduction. Empirical research on A-share listed manufacturing enterprises at last is conducted and the result tells that the model we come up with is greatly improved on the recognition rate of abnormal samples when compared with other method.\",\"PeriodicalId\":366262,\"journal\":{\"name\":\"2013 Fourth Global Congress on Intelligent Systems\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2013.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

资产质量是企业生存和发展的基础,我们选择单类支持向量机(OCSVM)进行资产质量异常检测,因为它对异常数据的获取具有重要作用。由于双正交小波具有线性相位特性和高消失矩特性,且构造灵活,因此分别依托Bior(2,2)和Bior(3,9)小波构造相应的小波核函数。在此基础上提出了新的混合核,并将其引入到OCSVM中进行模型创新。并将其应用于核主成分分析(KPCA)方法中,实现了高维空间映射和降维。最后对a股上市制造业企业进行了实证研究,结果表明,与其他方法相比,我们提出的模型在异常样本识别率上有很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Asset Quality Detection Based on Hybrid Biorthogonal Wavelet OCSVM Model
Asset quality is the foundation of enterprise survival and development we choose one-class support vector machine (OCSVM) is chosen to deal with asset quality abnormal detection for it pays great roles to acquire the abnormal data. As well as flexible to be constructed, Biorthogonal wavelet consists linear-phase nature and high vanishing moment, therefore, corresponding wavelet kernel functions are respectively constructed relying on Bior (2, 2) and Bior (3, 9) wavelet. On the basis of which new hybrid kernel is proposed and then introduced to OCSVM to innovate the model. In addition, it is applied into kernel principal component analysis (KPCA) method to realize a high dimension space mapping and enforce dimension reduction. Empirical research on A-share listed manufacturing enterprises at last is conducted and the result tells that the model we come up with is greatly improved on the recognition rate of abnormal samples when compared with other method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信