基于光容积脉搏波和人工智能技术的无创血糖水平检测研究进展

Ernia Susana, K. Ramli
{"title":"基于光容积脉搏波和人工智能技术的无创血糖水平检测研究进展","authors":"Ernia Susana, K. Ramli","doi":"10.1109/QIR54354.2021.9716164","DOIUrl":null,"url":null,"abstract":"The emergence of photoplethysmography for the non-invasive estimation of blood glucose levels in diabetes management offers an alternative solution to the limitations of invasive methods. The application of artificial intelligence technology to PPG signals for non-invasive measurement of monitoring blood glucose level (BGL) using either a machine learning (ML) or deep learning (DL) approach is proven to improve the resulting performance. This review is presented to provide concise information about current and proposed technologies developments of non-invasive blood glucose level monitoring methods using photoplethysmography. The study focuses on the opportunities and constraints in developing research on this topic.","PeriodicalId":446396,"journal":{"name":"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Review of Non-Invasive Blood Glucose Level Estimation based on Photoplethysmography and Artificial Intelligent Technology\",\"authors\":\"Ernia Susana, K. Ramli\",\"doi\":\"10.1109/QIR54354.2021.9716164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of photoplethysmography for the non-invasive estimation of blood glucose levels in diabetes management offers an alternative solution to the limitations of invasive methods. The application of artificial intelligence technology to PPG signals for non-invasive measurement of monitoring blood glucose level (BGL) using either a machine learning (ML) or deep learning (DL) approach is proven to improve the resulting performance. This review is presented to provide concise information about current and proposed technologies developments of non-invasive blood glucose level monitoring methods using photoplethysmography. The study focuses on the opportunities and constraints in developing research on this topic.\",\"PeriodicalId\":446396,\"journal\":{\"name\":\"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QIR54354.2021.9716164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QIR54354.2021.9716164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

光容积脉搏波的出现为糖尿病管理中无创血糖水平的评估提供了一种替代方案,以解决侵入性方法的局限性。将人工智能技术应用于PPG信号,使用机器学习(ML)或深度学习(DL)方法进行无创测量,以监测血糖水平(BGL),已被证明可以提高结果性能。本文简要介绍了利用光容积脉搏波仪进行无创血糖监测的技术进展。本研究的重点是发展这一主题研究的机会和制约因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of Non-Invasive Blood Glucose Level Estimation based on Photoplethysmography and Artificial Intelligent Technology
The emergence of photoplethysmography for the non-invasive estimation of blood glucose levels in diabetes management offers an alternative solution to the limitations of invasive methods. The application of artificial intelligence technology to PPG signals for non-invasive measurement of monitoring blood glucose level (BGL) using either a machine learning (ML) or deep learning (DL) approach is proven to improve the resulting performance. This review is presented to provide concise information about current and proposed technologies developments of non-invasive blood glucose level monitoring methods using photoplethysmography. The study focuses on the opportunities and constraints in developing research on this topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信