使用多数据源的共享-私有表示的动作分割

Beatrice van Amsterdam, A. Kadkhodamohammadi, Imanol Luengo, D. Stoyanov
{"title":"使用多数据源的共享-私有表示的动作分割","authors":"Beatrice van Amsterdam, A. Kadkhodamohammadi, Imanol Luengo, D. Stoyanov","doi":"10.1109/CVPR52729.2023.00236","DOIUrl":null,"url":null,"abstract":"Most state-of-the-art methods for action segmentation are based on single input modalities or naïve fusion of multiple data sources. However, effective fusion of complementary information can potentially strengthen segmentation models and make them more robust to sensor noise and more accurate with smaller training datasets. In order to improve multimodal representation learning for action segmentation, we propose to disentangle hidden features of a multi-stream segmentation model into modality-shared components, containing common information across data sources, and private components; we then use an attention bottleneck to capture long-range temporal dependencies in the data while preserving disentanglement in consecutive processing layers. Evaluation on 50salads, Breakfast and RARP45 datasets shows that our multimodal approach outperforms different data fusion baselines on both multiview and multimodal data sources, obtaining competitive or better results compared with the state-of-the-art. Our model is also more robust to additive sensor noise and can achieve performance on par with strong video baselines even with less training data.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ASPnet: Action Segmentation with Shared-Private Representation of Multiple Data Sources\",\"authors\":\"Beatrice van Amsterdam, A. Kadkhodamohammadi, Imanol Luengo, D. Stoyanov\",\"doi\":\"10.1109/CVPR52729.2023.00236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most state-of-the-art methods for action segmentation are based on single input modalities or naïve fusion of multiple data sources. However, effective fusion of complementary information can potentially strengthen segmentation models and make them more robust to sensor noise and more accurate with smaller training datasets. In order to improve multimodal representation learning for action segmentation, we propose to disentangle hidden features of a multi-stream segmentation model into modality-shared components, containing common information across data sources, and private components; we then use an attention bottleneck to capture long-range temporal dependencies in the data while preserving disentanglement in consecutive processing layers. Evaluation on 50salads, Breakfast and RARP45 datasets shows that our multimodal approach outperforms different data fusion baselines on both multiview and multimodal data sources, obtaining competitive or better results compared with the state-of-the-art. Our model is also more robust to additive sensor noise and can achieve performance on par with strong video baselines even with less training data.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.00236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.00236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

大多数最先进的动作分割方法是基于单一输入方式或naïve多个数据源的融合。然而,互补信息的有效融合可以潜在地增强分割模型,使其对传感器噪声更具鲁棒性,并且在更小的训练数据集上更准确。为了改进动作分割的多模态表示学习,我们提出将多流分割模型的隐藏特征分解为模态共享组件(包含跨数据源的公共信息)和私有组件;然后,我们使用注意力瓶颈来捕获数据中的长期时间依赖性,同时保持连续处理层的解纠缠性。对50个沙拉、早餐和RARP45数据集的评估表明,我们的多模式方法在多视图和多模式数据源上都优于不同的数据融合基线,与最先进的方法相比,获得了具有竞争力或更好的结果。我们的模型对附加传感器噪声的鲁棒性也更强,即使训练数据更少,也能达到与强视频基线相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASPnet: Action Segmentation with Shared-Private Representation of Multiple Data Sources
Most state-of-the-art methods for action segmentation are based on single input modalities or naïve fusion of multiple data sources. However, effective fusion of complementary information can potentially strengthen segmentation models and make them more robust to sensor noise and more accurate with smaller training datasets. In order to improve multimodal representation learning for action segmentation, we propose to disentangle hidden features of a multi-stream segmentation model into modality-shared components, containing common information across data sources, and private components; we then use an attention bottleneck to capture long-range temporal dependencies in the data while preserving disentanglement in consecutive processing layers. Evaluation on 50salads, Breakfast and RARP45 datasets shows that our multimodal approach outperforms different data fusion baselines on both multiview and multimodal data sources, obtaining competitive or better results compared with the state-of-the-art. Our model is also more robust to additive sensor noise and can achieve performance on par with strong video baselines even with less training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信