演示论文:使用视觉惯性传感器进行可穿戴式盲导航的自适应自我运动跟踪

Hongsheng He, Jindong Tan
{"title":"演示论文:使用视觉惯性传感器进行可穿戴式盲导航的自适应自我运动跟踪","authors":"Hongsheng He, Jindong Tan","doi":"10.1145/2668883.2669590","DOIUrl":null,"url":null,"abstract":"This paper presents an ego-motion tracking method using visual-inertial sensors to assist the visually impaired and blind (VIB) people to travel in unknown dynamic environments. We focus on the ego-motion tracking functionality to inform the wearers of their relative position with respect to the environment. A traveled trajectory is recovered by concatenating the transformation estimated from visual correspondences and instantaneous movements captured by inertial sensors. Therefore, we introduce an adaptive mechanism to judge the reliability of visual tracking by comparing the estimated rotation with the gyroscopic measurement. The measuring frequencies of visual and inertial sensors are different because of different physical sampling rates and the introduced adaptive mechanism. We adopt the multi-rate extended Kalman filter (EKF) to fuse the visual estimation and inertial measurement. In the experiment, we wear the navigation system to follow a path in an indoor environment, and the results show the effectiveness and precision of the proposed methods in ego-motion tracking.","PeriodicalId":185800,"journal":{"name":"Proceedings of the Wireless Health 2014 on National Institutes of Health","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Demonstration Paper: Adaptive Ego-Motion Tracking Using Visual-Inertial Sensors for Wearable Blind Navigation\",\"authors\":\"Hongsheng He, Jindong Tan\",\"doi\":\"10.1145/2668883.2669590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an ego-motion tracking method using visual-inertial sensors to assist the visually impaired and blind (VIB) people to travel in unknown dynamic environments. We focus on the ego-motion tracking functionality to inform the wearers of their relative position with respect to the environment. A traveled trajectory is recovered by concatenating the transformation estimated from visual correspondences and instantaneous movements captured by inertial sensors. Therefore, we introduce an adaptive mechanism to judge the reliability of visual tracking by comparing the estimated rotation with the gyroscopic measurement. The measuring frequencies of visual and inertial sensors are different because of different physical sampling rates and the introduced adaptive mechanism. We adopt the multi-rate extended Kalman filter (EKF) to fuse the visual estimation and inertial measurement. In the experiment, we wear the navigation system to follow a path in an indoor environment, and the results show the effectiveness and precision of the proposed methods in ego-motion tracking.\",\"PeriodicalId\":185800,\"journal\":{\"name\":\"Proceedings of the Wireless Health 2014 on National Institutes of Health\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Wireless Health 2014 on National Institutes of Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2668883.2669590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Wireless Health 2014 on National Institutes of Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668883.2669590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种利用视觉惯性传感器辅助视障盲人在未知动态环境中行走的自运动跟踪方法。我们专注于自我运动跟踪功能,告知佩戴者他们在环境中的相对位置。通过将视觉对应和惯性传感器捕获的瞬时运动估计的变换串联起来,恢复出行进轨迹。因此,我们引入了一种自适应机制,通过比较估计的旋转和陀螺仪测量来判断视觉跟踪的可靠性。由于物理采样率的不同和引入的自适应机制,视觉传感器和惯性传感器的测量频率不同。我们采用多速率扩展卡尔曼滤波(EKF)融合视觉估计和惯性测量。在实验中,我们戴着导航系统在室内环境中跟踪路径,结果表明了所提出的方法在自我运动跟踪中的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstration Paper: Adaptive Ego-Motion Tracking Using Visual-Inertial Sensors for Wearable Blind Navigation
This paper presents an ego-motion tracking method using visual-inertial sensors to assist the visually impaired and blind (VIB) people to travel in unknown dynamic environments. We focus on the ego-motion tracking functionality to inform the wearers of their relative position with respect to the environment. A traveled trajectory is recovered by concatenating the transformation estimated from visual correspondences and instantaneous movements captured by inertial sensors. Therefore, we introduce an adaptive mechanism to judge the reliability of visual tracking by comparing the estimated rotation with the gyroscopic measurement. The measuring frequencies of visual and inertial sensors are different because of different physical sampling rates and the introduced adaptive mechanism. We adopt the multi-rate extended Kalman filter (EKF) to fuse the visual estimation and inertial measurement. In the experiment, we wear the navigation system to follow a path in an indoor environment, and the results show the effectiveness and precision of the proposed methods in ego-motion tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信