Sarsa视觉伺服增益调谐:在机械臂上的应用

Jie Liu, Yang Zhou, Jian Gao, Weisheng Yan
{"title":"Sarsa视觉伺服增益调谐:在机械臂上的应用","authors":"Jie Liu, Yang Zhou, Jian Gao, Weisheng Yan","doi":"10.1145/3598151.3598169","DOIUrl":null,"url":null,"abstract":"This paper investigates a Sarsa-based visual servoing control gain tuning method and the application on a manipulator. For a typical visual servo controller, fixed control gains will not provide the best performance. Therefore, state action reward state action (SARSA) algorithm, one of learning-based methods from reinforcement learning (RL), is introduced to select control gains in every control step. The norm of the visual error is used to define the state space. The positive gain of the controller is discretized as the actions. A reward function is defined to evaluate the performance of every action. Both a numerical test and a robot experiment are carried out to validate the presented algorithm.","PeriodicalId":398644,"journal":{"name":"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering","volume":"240 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Servoing Gain Tuning by Sarsa: an Application with a Manipulator\",\"authors\":\"Jie Liu, Yang Zhou, Jian Gao, Weisheng Yan\",\"doi\":\"10.1145/3598151.3598169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a Sarsa-based visual servoing control gain tuning method and the application on a manipulator. For a typical visual servo controller, fixed control gains will not provide the best performance. Therefore, state action reward state action (SARSA) algorithm, one of learning-based methods from reinforcement learning (RL), is introduced to select control gains in every control step. The norm of the visual error is used to define the state space. The positive gain of the controller is discretized as the actions. A reward function is defined to evaluate the performance of every action. Both a numerical test and a robot experiment are carried out to validate the presented algorithm.\",\"PeriodicalId\":398644,\"journal\":{\"name\":\"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering\",\"volume\":\"240 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3598151.3598169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 3rd International Conference on Robotics and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3598151.3598169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种基于sarsa的视觉伺服控制增益整定方法及其在机械臂上的应用。对于典型的视觉伺服控制器,固定的控制增益不能提供最佳的性能。为此,引入强化学习(RL)中一种基于学习的方法——状态动作奖励状态动作(SARSA)算法,在每个控制步骤中选择控制增益。使用视觉误差范数来定义状态空间。控制器的正增益作为动作被离散化。我们定义了奖励函数来评估每个行动的表现。通过数值试验和机器人实验验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Servoing Gain Tuning by Sarsa: an Application with a Manipulator
This paper investigates a Sarsa-based visual servoing control gain tuning method and the application on a manipulator. For a typical visual servo controller, fixed control gains will not provide the best performance. Therefore, state action reward state action (SARSA) algorithm, one of learning-based methods from reinforcement learning (RL), is introduced to select control gains in every control step. The norm of the visual error is used to define the state space. The positive gain of the controller is discretized as the actions. A reward function is defined to evaluate the performance of every action. Both a numerical test and a robot experiment are carried out to validate the presented algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信