CVP定量硬度的研究

Huck Bennett, Alexander Golovnev, Noah Stephens-Davidowitz
{"title":"CVP定量硬度的研究","authors":"Huck Bennett, Alexander Golovnev, Noah Stephens-Davidowitz","doi":"10.1109/FOCS.2017.11","DOIUrl":null,"url":null,"abstract":"For odd integers p ≥ 1 (and p = ∞), we show that the Closest Vector Problem in the ℓp norm (CVP_p) over rank n lattices cannot be solved in 2^(1-≥) n time for any constant ≥ 0 unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to almost all values of p ≥ 1, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of CVP_2 (i.e., CVP in the Euclidean norm), for which a 2^{n +o(n)}-time algorithm is known. In particular, our result applies for any p = p(n) ≠ 2 that approaches 2 as n ↦ ∞.We also show a similar SETH-hardness result for SVP_∞; hardness of approximating CVP_p to within some constant factor under the so-called Gap-ETH assumption; and other hardness results for CVP_p and CVPP_p for any 1 ≤ p","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"On the Quantitative Hardness of CVP\",\"authors\":\"Huck Bennett, Alexander Golovnev, Noah Stephens-Davidowitz\",\"doi\":\"10.1109/FOCS.2017.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For odd integers p ≥ 1 (and p = ∞), we show that the Closest Vector Problem in the ℓp norm (CVP_p) over rank n lattices cannot be solved in 2^(1-≥) n time for any constant ≥ 0 unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to almost all values of p ≥ 1, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of CVP_2 (i.e., CVP in the Euclidean norm), for which a 2^{n +o(n)}-time algorithm is known. In particular, our result applies for any p = p(n) ≠ 2 that approaches 2 as n ↦ ∞.We also show a similar SETH-hardness result for SVP_∞; hardness of approximating CVP_p to within some constant factor under the so-called Gap-ETH assumption; and other hardness results for CVP_p and CVPP_p for any 1 ≤ p\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

对于奇数p ≥1(和p = ∞),我们证明了n阶格上的ℓp范数(CVP_p)中的最接近向量问题不能在2^(1-≥) n时间内解决,对于任何常数≥除非强指数时间假设(SETH)不成立。然后我们将这个结果扩展到几乎所有的p ≥1,不包括偶数。这非常接近于解决CVP_2(即欧几里得范数中的CVP)的重要特殊情况的定量时间复杂性,其中已知的2^{n +o(n)}时间算法。特别地,我们的结果适用于任意p = p(n) ≠n ↦& # x221E;。我们还发现SVP_∞;在所谓Gap-ETH假设下,CVP_p近似于某常数因子的硬度;以及任意1 ≤的CVP_p和CVPP_p的其他硬度结果;p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Quantitative Hardness of CVP
For odd integers p ≥ 1 (and p = ∞), we show that the Closest Vector Problem in the ℓp norm (CVP_p) over rank n lattices cannot be solved in 2^(1-≥) n time for any constant ≥ 0 unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to almost all values of p ≥ 1, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of CVP_2 (i.e., CVP in the Euclidean norm), for which a 2^{n +o(n)}-time algorithm is known. In particular, our result applies for any p = p(n) ≠ 2 that approaches 2 as n ↦ ∞.We also show a similar SETH-hardness result for SVP_∞; hardness of approximating CVP_p to within some constant factor under the so-called Gap-ETH assumption; and other hardness results for CVP_p and CVPP_p for any 1 ≤ p
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信