{"title":"主动减振器设计的自适应积分滑模控制","authors":"Tri-Tan Van Cao, Lei Chen, F. He, K. Sammut","doi":"10.1109/CDC.2000.914166","DOIUrl":null,"url":null,"abstract":"A new tuning method for active vibration absorber design is presented in this paper. A robust, adaptive control scheme based on a variable structure with an adaptive discontinuity surface is designed and simulated. Robust synthesis of an adaptive discontinuity surface based on an augmented state-space is discussed. The proposed tuning scheme has three superior features compared with the existing counterparts in that: (i) it is completely insensitive to changes in the stiffness and damping of the absorber, (ii) it is capable of suppressing cyclic vibrations over a wide range of frequencies, (iii) its real-time operation requires only one adjustable gain.","PeriodicalId":217237,"journal":{"name":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive integral sliding mode control for active vibration absorber design\",\"authors\":\"Tri-Tan Van Cao, Lei Chen, F. He, K. Sammut\",\"doi\":\"10.1109/CDC.2000.914166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new tuning method for active vibration absorber design is presented in this paper. A robust, adaptive control scheme based on a variable structure with an adaptive discontinuity surface is designed and simulated. Robust synthesis of an adaptive discontinuity surface based on an augmented state-space is discussed. The proposed tuning scheme has three superior features compared with the existing counterparts in that: (i) it is completely insensitive to changes in the stiffness and damping of the absorber, (ii) it is capable of suppressing cyclic vibrations over a wide range of frequencies, (iii) its real-time operation requires only one adjustable gain.\",\"PeriodicalId\":217237,\"journal\":{\"name\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2000.914166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2000.914166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive integral sliding mode control for active vibration absorber design
A new tuning method for active vibration absorber design is presented in this paper. A robust, adaptive control scheme based on a variable structure with an adaptive discontinuity surface is designed and simulated. Robust synthesis of an adaptive discontinuity surface based on an augmented state-space is discussed. The proposed tuning scheme has three superior features compared with the existing counterparts in that: (i) it is completely insensitive to changes in the stiffness and damping of the absorber, (ii) it is capable of suppressing cyclic vibrations over a wide range of frequencies, (iii) its real-time operation requires only one adjustable gain.