关于对角结构矩阵的计算

S. Hossain, M. S. Mahmud
{"title":"关于对角结构矩阵的计算","authors":"S. Hossain, M. S. Mahmud","doi":"10.1109/HPEC.2019.8916325","DOIUrl":null,"url":null,"abstract":"We present a storage scheme for storing matrices by diagonals and algorithms for performing matrix-matrix and matrix-vector multiplication by diagonals. Matrix elements are accessed with stride-1 and involve no indirect referencing. Access to the transposed matrix requires no additional effort. The proposed storage scheme handles dense matrices and matrices with special structure e.g., banded, triangular, symmetric in a uniform manner. Test results from preliminary numerical experiments with an OpenMP implementation of our method are encouraging.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Computing with Diagonally Structured Matrices\",\"authors\":\"S. Hossain, M. S. Mahmud\",\"doi\":\"10.1109/HPEC.2019.8916325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a storage scheme for storing matrices by diagonals and algorithms for performing matrix-matrix and matrix-vector multiplication by diagonals. Matrix elements are accessed with stride-1 and involve no indirect referencing. Access to the transposed matrix requires no additional effort. The proposed storage scheme handles dense matrices and matrices with special structure e.g., banded, triangular, symmetric in a uniform manner. Test results from preliminary numerical experiments with an OpenMP implementation of our method are encouraging.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种用对角线存储矩阵的存储方案,以及用对角线进行矩阵-矩阵和矩阵-向量乘法的算法。使用stride-1访问矩阵元素,不涉及间接引用。访问转置矩阵不需要额外的努力。所提出的存储方案以统一的方式处理密集矩阵和具有带状、三角形、对称等特殊结构的矩阵。用OpenMP实现的初步数值实验结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Computing with Diagonally Structured Matrices
We present a storage scheme for storing matrices by diagonals and algorithms for performing matrix-matrix and matrix-vector multiplication by diagonals. Matrix elements are accessed with stride-1 and involve no indirect referencing. Access to the transposed matrix requires no additional effort. The proposed storage scheme handles dense matrices and matrices with special structure e.g., banded, triangular, symmetric in a uniform manner. Test results from preliminary numerical experiments with an OpenMP implementation of our method are encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信