线性mimo系统可控性和可观测性代数判据的新表述

{"title":"线性mimo系统可控性和可观测性代数判据的新表述","authors":"","doi":"10.36652/0869-4931-2021-75-3-135-137","DOIUrl":null,"url":null,"abstract":"New formulations of algebraic criteria for controllability and observability of a linear dynamical system with multiple inputs and outputs (MIMO-systems) are given, the corresponding theorems are formulated. The criteria are based on algebraic relations between linear combinations of the control matrix columns and own vectors of the free dynamics matrix.\n\nKeywords\nalgebraic criterion; controllability; observability; linear MIMO-system; own value; own vector; Krylov vector and matrix; kernel; cokernel","PeriodicalId":309803,"journal":{"name":"Automation. Modern Techologies","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New formulations of algebraic criteria for controllability and observability of a linear MIMO-system\",\"authors\":\"\",\"doi\":\"10.36652/0869-4931-2021-75-3-135-137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New formulations of algebraic criteria for controllability and observability of a linear dynamical system with multiple inputs and outputs (MIMO-systems) are given, the corresponding theorems are formulated. The criteria are based on algebraic relations between linear combinations of the control matrix columns and own vectors of the free dynamics matrix.\\n\\nKeywords\\nalgebraic criterion; controllability; observability; linear MIMO-system; own value; own vector; Krylov vector and matrix; kernel; cokernel\",\"PeriodicalId\":309803,\"journal\":{\"name\":\"Automation. Modern Techologies\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation. Modern Techologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36652/0869-4931-2021-75-3-135-137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation. Modern Techologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36652/0869-4931-2021-75-3-135-137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了多输入输出线性动力系统(mimo -系统)可控性和可观测性代数判据的新表达式,并给出了相应的定理。该准则基于控制矩阵列与自由动力学矩阵自身向量的线性组合之间的代数关系。Keywordsalgebraic标准;可控性;可观测性;线性MIMO-system;自己的价值;自己的向量;克雷洛夫向量与矩阵;内核;上核
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New formulations of algebraic criteria for controllability and observability of a linear MIMO-system
New formulations of algebraic criteria for controllability and observability of a linear dynamical system with multiple inputs and outputs (MIMO-systems) are given, the corresponding theorems are formulated. The criteria are based on algebraic relations between linear combinations of the control matrix columns and own vectors of the free dynamics matrix. Keywords algebraic criterion; controllability; observability; linear MIMO-system; own value; own vector; Krylov vector and matrix; kernel; cokernel
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信