应用机器学习方法识别DTS数据注入间隔

A. Sadretdinov, R. Valiullin, R. Yarullin
{"title":"应用机器学习方法识别DTS数据注入间隔","authors":"A. Sadretdinov, R. Valiullin, R. Yarullin","doi":"10.3997/2214-4609.202054021","DOIUrl":null,"url":null,"abstract":"Summary The problem of determining the intervals of fluid loss in an injection horizontal well is solved. The chosen setting is one of the simplest from the point of view of the ongoing processes. The successful solution of the problem using machine learning methods should show the perspective of the approach for solving more complex problems. The chosen approach to solving the problem involves training models on a synthetic sample obtained using a thermohydrodynamic simulator. The results of the algorithm operation are demonstrated, which can be assessed as successful.","PeriodicalId":281085,"journal":{"name":"Data Science in Oil & Gas","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Machine Learning Methods to Identify Injection Intervals Using DTS Data\",\"authors\":\"A. Sadretdinov, R. Valiullin, R. Yarullin\",\"doi\":\"10.3997/2214-4609.202054021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The problem of determining the intervals of fluid loss in an injection horizontal well is solved. The chosen setting is one of the simplest from the point of view of the ongoing processes. The successful solution of the problem using machine learning methods should show the perspective of the approach for solving more complex problems. The chosen approach to solving the problem involves training models on a synthetic sample obtained using a thermohydrodynamic simulator. The results of the algorithm operation are demonstrated, which can be assessed as successful.\",\"PeriodicalId\":281085,\"journal\":{\"name\":\"Data Science in Oil & Gas\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Science in Oil & Gas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.202054021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science in Oil & Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202054021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决了水平井注水井失液层段的确定问题。从正在进行的流程的角度来看,所选择的设置是最简单的设置之一。使用机器学习方法成功解决问题应该显示出解决更复杂问题的方法的视角。所选择的解决问题的方法是在使用热流体模拟器获得的合成样品上训练模型。最后对算法的运行结果进行了验证,表明该算法是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Machine Learning Methods to Identify Injection Intervals Using DTS Data
Summary The problem of determining the intervals of fluid loss in an injection horizontal well is solved. The chosen setting is one of the simplest from the point of view of the ongoing processes. The successful solution of the problem using machine learning methods should show the perspective of the approach for solving more complex problems. The chosen approach to solving the problem involves training models on a synthetic sample obtained using a thermohydrodynamic simulator. The results of the algorithm operation are demonstrated, which can be assessed as successful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信