Renan Araújo Lima, José Wanderson Oliveira Silva, L. Gonçalves
{"title":"一种用于监测和刺激啮齿动物的计算机视觉系统","authors":"Renan Araújo Lima, José Wanderson Oliveira Silva, L. Gonçalves","doi":"10.5753/sibgrapi.est.2022.23265","DOIUrl":null,"url":null,"abstract":"The Behavioral Neurophysiology research area investigates the electrophysiological correlates of behaviors, normally using animals such as rodents as subjects. Examples of studies in the field include the investigation of neural processing dysfunctions and synaptic plasticity in animal models of autism and changes in synaptic plasticity in animal models of epilepsy. This area is in constant need of new equipment to aid research. With this goal, this work aims to develop a system capable of receiving video information in real-time using computer vision algorithms to define the positioning of the animal, plus the processing of ultrasound audio and brain electrophysiology signals. These data are to be represented in a user-friendly way and, from these data, we also aim to generate brain stimuli depending on the type of test being performed.","PeriodicalId":182158,"journal":{"name":"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards a Computer Vision System for Monitoring and Stimulation of Rodents\",\"authors\":\"Renan Araújo Lima, José Wanderson Oliveira Silva, L. Gonçalves\",\"doi\":\"10.5753/sibgrapi.est.2022.23265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Behavioral Neurophysiology research area investigates the electrophysiological correlates of behaviors, normally using animals such as rodents as subjects. Examples of studies in the field include the investigation of neural processing dysfunctions and synaptic plasticity in animal models of autism and changes in synaptic plasticity in animal models of epilepsy. This area is in constant need of new equipment to aid research. With this goal, this work aims to develop a system capable of receiving video information in real-time using computer vision algorithms to define the positioning of the animal, plus the processing of ultrasound audio and brain electrophysiology signals. These data are to be represented in a user-friendly way and, from these data, we also aim to generate brain stimuli depending on the type of test being performed.\",\"PeriodicalId\":182158,\"journal\":{\"name\":\"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sibgrapi.est.2022.23265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXXV Conference on Graphics, Patterns and Images (SIBGRAPI Estendido 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2022.23265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a Computer Vision System for Monitoring and Stimulation of Rodents
The Behavioral Neurophysiology research area investigates the electrophysiological correlates of behaviors, normally using animals such as rodents as subjects. Examples of studies in the field include the investigation of neural processing dysfunctions and synaptic plasticity in animal models of autism and changes in synaptic plasticity in animal models of epilepsy. This area is in constant need of new equipment to aid research. With this goal, this work aims to develop a system capable of receiving video information in real-time using computer vision algorithms to define the positioning of the animal, plus the processing of ultrasound audio and brain electrophysiology signals. These data are to be represented in a user-friendly way and, from these data, we also aim to generate brain stimuli depending on the type of test being performed.