基于慢扫描激光雷达数据的动态环境重建中的移动人体去除

Tianwei Zhang, Yoshihiko Nakamura
{"title":"基于慢扫描激光雷达数据的动态环境重建中的移动人体去除","authors":"Tianwei Zhang, Yoshihiko Nakamura","doi":"10.1109/URAI.2018.8441778","DOIUrl":null,"url":null,"abstract":"Point clouds data registration is a crucial task for robotic environment reconstruction and understanding. The dynamic environment is a challenging problem for point clouds registration since moving objects occlude the static background and result in the feature corresponding failure. In this paper, we propose a moving object detection and removing method for slow-scanning LIDAR data. We define a Mean Axis Descriptor for moving objects description. Moreover, we recover the big motion distortions using this descriptor and sensor parameters. These recovered objects can be used for motion tracking and high frame-rate point clouds generation. A big scale dynamic environment reconstruction experiment result indicates that the proposed method is promising in moving object removal and motion distortion recovery.","PeriodicalId":347727,"journal":{"name":"2018 15th International Conference on Ubiquitous Robots (UR)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Moving Humans Removal for Dynamic Environment Reconstruction from Slow-Scanning LIDAR Data\",\"authors\":\"Tianwei Zhang, Yoshihiko Nakamura\",\"doi\":\"10.1109/URAI.2018.8441778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point clouds data registration is a crucial task for robotic environment reconstruction and understanding. The dynamic environment is a challenging problem for point clouds registration since moving objects occlude the static background and result in the feature corresponding failure. In this paper, we propose a moving object detection and removing method for slow-scanning LIDAR data. We define a Mean Axis Descriptor for moving objects description. Moreover, we recover the big motion distortions using this descriptor and sensor parameters. These recovered objects can be used for motion tracking and high frame-rate point clouds generation. A big scale dynamic environment reconstruction experiment result indicates that the proposed method is promising in moving object removal and motion distortion recovery.\",\"PeriodicalId\":347727,\"journal\":{\"name\":\"2018 15th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2018.8441778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2018.8441778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

点云数据配准是机器人环境重建和理解的关键任务。动态环境是点云配准的难点,运动物体遮挡静态背景会导致特征对应失效。本文提出了一种针对慢扫描激光雷达数据的运动目标检测与去除方法。我们定义了一个用于移动物体描述的平均轴描述符。此外,我们还利用该描述符和传感器参数恢复了较大的运动畸变。这些恢复的目标可以用于运动跟踪和高帧率的点云生成。大尺度动态环境重建实验结果表明,该方法在运动目标去除和运动畸变恢复方面具有较好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving Humans Removal for Dynamic Environment Reconstruction from Slow-Scanning LIDAR Data
Point clouds data registration is a crucial task for robotic environment reconstruction and understanding. The dynamic environment is a challenging problem for point clouds registration since moving objects occlude the static background and result in the feature corresponding failure. In this paper, we propose a moving object detection and removing method for slow-scanning LIDAR data. We define a Mean Axis Descriptor for moving objects description. Moreover, we recover the big motion distortions using this descriptor and sensor parameters. These recovered objects can be used for motion tracking and high frame-rate point clouds generation. A big scale dynamic environment reconstruction experiment result indicates that the proposed method is promising in moving object removal and motion distortion recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信