轴承故障诊断的概率干扰区间估计

K. Wilson
{"title":"轴承故障诊断的概率干扰区间估计","authors":"K. Wilson","doi":"10.1109/DEMPED.2009.5292803","DOIUrl":null,"url":null,"abstract":"We describe a new method for detecting characteristic bearing fault signatures from accelerometer vibration data based on a probabilistic model of the fault signal generation process. It is common to assume that single-point bearing defects cause periodic disturbances in bearing vibration signals, but this assumption may not be valid in practice. Our new method is less sensitive to departures from periodicity, such as fault disturbance amplitude and timing variations, than standard spectral or autocorrelation-based approaches. We demonstrate the utility of our method by distinguishing among inner race, outer race, and rolling element faults in a bearing fault test rig. Our method is significantly better than standard techniques at detecting rolling element (ball) faults.","PeriodicalId":405777,"journal":{"name":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Probabilistic inter-disturbance interval estimation for bearing fault diagnosis\",\"authors\":\"K. Wilson\",\"doi\":\"10.1109/DEMPED.2009.5292803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a new method for detecting characteristic bearing fault signatures from accelerometer vibration data based on a probabilistic model of the fault signal generation process. It is common to assume that single-point bearing defects cause periodic disturbances in bearing vibration signals, but this assumption may not be valid in practice. Our new method is less sensitive to departures from periodicity, such as fault disturbance amplitude and timing variations, than standard spectral or autocorrelation-based approaches. We demonstrate the utility of our method by distinguishing among inner race, outer race, and rolling element faults in a bearing fault test rig. Our method is significantly better than standard techniques at detecting rolling element (ball) faults.\",\"PeriodicalId\":405777,\"journal\":{\"name\":\"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2009.5292803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2009.5292803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于故障信号产生过程的概率模型,提出了一种从加速度计振动数据中检测轴承故障特征的新方法。通常假设单点轴承缺陷会引起轴承振动信号的周期性干扰,但这种假设在实践中可能不成立。与标准的光谱或基于自相关的方法相比,我们的新方法对偏离周期性(如故障扰动幅度和时间变化)的敏感性较低。通过对轴承故障试验台内圈、外圈和滚动体故障的区分,验证了该方法的实用性。我们的方法在检测滚动体(球)故障方面明显优于标准技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic inter-disturbance interval estimation for bearing fault diagnosis
We describe a new method for detecting characteristic bearing fault signatures from accelerometer vibration data based on a probabilistic model of the fault signal generation process. It is common to assume that single-point bearing defects cause periodic disturbances in bearing vibration signals, but this assumption may not be valid in practice. Our new method is less sensitive to departures from periodicity, such as fault disturbance amplitude and timing variations, than standard spectral or autocorrelation-based approaches. We demonstrate the utility of our method by distinguishing among inner race, outer race, and rolling element faults in a bearing fault test rig. Our method is significantly better than standard techniques at detecting rolling element (ball) faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信