一些多数运算的寻找及其中心化一元的研究

Hajime Machida
{"title":"一些多数运算的寻找及其中心化一元的研究","authors":"Hajime Machida","doi":"10.1109/ISMVL57333.2023.00033","DOIUrl":null,"url":null,"abstract":"A centralizing monoid M is a set of unary operations which commute with some set F of operations. Here F is called a witness of M.On a 3-element set, majority minimal operations serve as witnesses of maximal centralizing monoids. In this paper, we start with one such majority operation and obtain its generalization, called mb, on a k-element set for any k ≥ 3. We explicitly describe the centralizing monoid M(mb) with mb as its witness and then prove it is not maximal if k > 3, contrary to the fact for k = 3.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Search for Some Majority Operation and Studies of its Centralizing Monoid\",\"authors\":\"Hajime Machida\",\"doi\":\"10.1109/ISMVL57333.2023.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A centralizing monoid M is a set of unary operations which commute with some set F of operations. Here F is called a witness of M.On a 3-element set, majority minimal operations serve as witnesses of maximal centralizing monoids. In this paper, we start with one such majority operation and obtain its generalization, called mb, on a k-element set for any k ≥ 3. We explicitly describe the centralizing monoid M(mb) with mb as its witness and then prove it is not maximal if k > 3, contrary to the fact for k = 3.\",\"PeriodicalId\":419220,\"journal\":{\"name\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL57333.2023.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个集中的单调体M是一组一元操作的集合,它们与某个操作集合F交换。在3元集合上,多数极小运算作为极大集中一元群的证明。在本文中,我们从一个这样的多数运算开始,得到了它在k元素集合上对任意k≥3的推广,称为mb。我们明确地描述了以mb为见证的集中单群M(mb),然后证明了当k > 3时它不是极大的,与k = 3时相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Search for Some Majority Operation and Studies of its Centralizing Monoid
A centralizing monoid M is a set of unary operations which commute with some set F of operations. Here F is called a witness of M.On a 3-element set, majority minimal operations serve as witnesses of maximal centralizing monoids. In this paper, we start with one such majority operation and obtain its generalization, called mb, on a k-element set for any k ≥ 3. We explicitly describe the centralizing monoid M(mb) with mb as its witness and then prove it is not maximal if k > 3, contrary to the fact for k = 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信