{"title":"术中躯体感觉诱发电位监测的动态预测模型","authors":"H. Cui, Xiaobo Xie, Shengpu Xu, Yong Hu","doi":"10.1109/CIVEMSA.2015.7158596","DOIUrl":null,"url":null,"abstract":"This study proposed a support vector regression model applied in prediction of intraoperative somatosensory evoked potential changes associated with physiological and anesthetic changes. This model was developed from probability distribution and support vector machines. The predicted results showed that observed and predicted SEP has similar variation trend with different values, with acceptable errors. With this prediction model, changes of SEP in correlation with non-surgical factors were estimated. Not only the prediction accuracy of SEP has been improved, but also provides the reliability of the classification. It will be helpful to develop an intelligent monitor model based expert system that can make a reliable decision for the potential spinal injury.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A dynamic prediction model for intraoperative somatosensory evoked potential monitoring\",\"authors\":\"H. Cui, Xiaobo Xie, Shengpu Xu, Yong Hu\",\"doi\":\"10.1109/CIVEMSA.2015.7158596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposed a support vector regression model applied in prediction of intraoperative somatosensory evoked potential changes associated with physiological and anesthetic changes. This model was developed from probability distribution and support vector machines. The predicted results showed that observed and predicted SEP has similar variation trend with different values, with acceptable errors. With this prediction model, changes of SEP in correlation with non-surgical factors were estimated. Not only the prediction accuracy of SEP has been improved, but also provides the reliability of the classification. It will be helpful to develop an intelligent monitor model based expert system that can make a reliable decision for the potential spinal injury.\",\"PeriodicalId\":348918,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2015.7158596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dynamic prediction model for intraoperative somatosensory evoked potential monitoring
This study proposed a support vector regression model applied in prediction of intraoperative somatosensory evoked potential changes associated with physiological and anesthetic changes. This model was developed from probability distribution and support vector machines. The predicted results showed that observed and predicted SEP has similar variation trend with different values, with acceptable errors. With this prediction model, changes of SEP in correlation with non-surgical factors were estimated. Not only the prediction accuracy of SEP has been improved, but also provides the reliability of the classification. It will be helpful to develop an intelligent monitor model based expert system that can make a reliable decision for the potential spinal injury.