{"title":"静态图像的鲁棒人脸检测","authors":"Patrick Laytner, Chrisford Ling, Q. Xiao","doi":"10.1109/CIBIM.2014.7015446","DOIUrl":null,"url":null,"abstract":"Facial recognition is one of the most studied topics in the field of biometrics because of its varied applications. Detection of dark colored faces and poorly illuminated faces are not well studied in the literature due to several challenges. The most critical challenge is that there is inadequate contrast among facial features. To overcome this challenge, a new face detection methodology, which consists of histogram analysis, Haar wavelet transformation and Adaboost learning techniques, is proposed. The extended Yale Face Database B is used to examine the performance of the proposed method and compared against commonly used OpenCV's Haar detection algorithm. The experimental results with 9,883 positive images and 10,349 negative images showed a considerable improvement in face hit rates without a significant change in false acceptance rates.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Robust face detection from still images\",\"authors\":\"Patrick Laytner, Chrisford Ling, Q. Xiao\",\"doi\":\"10.1109/CIBIM.2014.7015446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial recognition is one of the most studied topics in the field of biometrics because of its varied applications. Detection of dark colored faces and poorly illuminated faces are not well studied in the literature due to several challenges. The most critical challenge is that there is inadequate contrast among facial features. To overcome this challenge, a new face detection methodology, which consists of histogram analysis, Haar wavelet transformation and Adaboost learning techniques, is proposed. The extended Yale Face Database B is used to examine the performance of the proposed method and compared against commonly used OpenCV's Haar detection algorithm. The experimental results with 9,883 positive images and 10,349 negative images showed a considerable improvement in face hit rates without a significant change in false acceptance rates.\",\"PeriodicalId\":432938,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2014.7015446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial recognition is one of the most studied topics in the field of biometrics because of its varied applications. Detection of dark colored faces and poorly illuminated faces are not well studied in the literature due to several challenges. The most critical challenge is that there is inadequate contrast among facial features. To overcome this challenge, a new face detection methodology, which consists of histogram analysis, Haar wavelet transformation and Adaboost learning techniques, is proposed. The extended Yale Face Database B is used to examine the performance of the proposed method and compared against commonly used OpenCV's Haar detection algorithm. The experimental results with 9,883 positive images and 10,349 negative images showed a considerable improvement in face hit rates without a significant change in false acceptance rates.