静态图像的鲁棒人脸检测

Patrick Laytner, Chrisford Ling, Q. Xiao
{"title":"静态图像的鲁棒人脸检测","authors":"Patrick Laytner, Chrisford Ling, Q. Xiao","doi":"10.1109/CIBIM.2014.7015446","DOIUrl":null,"url":null,"abstract":"Facial recognition is one of the most studied topics in the field of biometrics because of its varied applications. Detection of dark colored faces and poorly illuminated faces are not well studied in the literature due to several challenges. The most critical challenge is that there is inadequate contrast among facial features. To overcome this challenge, a new face detection methodology, which consists of histogram analysis, Haar wavelet transformation and Adaboost learning techniques, is proposed. The extended Yale Face Database B is used to examine the performance of the proposed method and compared against commonly used OpenCV's Haar detection algorithm. The experimental results with 9,883 positive images and 10,349 negative images showed a considerable improvement in face hit rates without a significant change in false acceptance rates.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Robust face detection from still images\",\"authors\":\"Patrick Laytner, Chrisford Ling, Q. Xiao\",\"doi\":\"10.1109/CIBIM.2014.7015446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial recognition is one of the most studied topics in the field of biometrics because of its varied applications. Detection of dark colored faces and poorly illuminated faces are not well studied in the literature due to several challenges. The most critical challenge is that there is inadequate contrast among facial features. To overcome this challenge, a new face detection methodology, which consists of histogram analysis, Haar wavelet transformation and Adaboost learning techniques, is proposed. The extended Yale Face Database B is used to examine the performance of the proposed method and compared against commonly used OpenCV's Haar detection algorithm. The experimental results with 9,883 positive images and 10,349 negative images showed a considerable improvement in face hit rates without a significant change in false acceptance rates.\",\"PeriodicalId\":432938,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2014.7015446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

面部识别因其广泛的应用而成为生物识别领域研究最多的课题之一。由于一些挑战,在文献中没有很好地研究深色人脸和光照不足人脸的检测。最关键的挑战是面部特征之间的对比不足。为了克服这一挑战,提出了一种新的人脸检测方法,该方法由直方图分析、Haar小波变换和Adaboost学习技术组成。使用扩展的耶鲁人脸数据库B来检验所提出方法的性能,并与常用的OpenCV的Haar检测算法进行比较。在9883张正面图像和10349张负面图像的实验结果中,人脸识别率有了很大的提高,但错误接受率没有显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust face detection from still images
Facial recognition is one of the most studied topics in the field of biometrics because of its varied applications. Detection of dark colored faces and poorly illuminated faces are not well studied in the literature due to several challenges. The most critical challenge is that there is inadequate contrast among facial features. To overcome this challenge, a new face detection methodology, which consists of histogram analysis, Haar wavelet transformation and Adaboost learning techniques, is proposed. The extended Yale Face Database B is used to examine the performance of the proposed method and compared against commonly used OpenCV's Haar detection algorithm. The experimental results with 9,883 positive images and 10,349 negative images showed a considerable improvement in face hit rates without a significant change in false acceptance rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信