{"title":"沿海地区低概率拦截雷达探测低可观测目标和无人机的rcs特异性信噪比和对数似然函数评估","authors":"P. Neelakanta, D. D. Groff","doi":"10.14738/tnc.94.10512","DOIUrl":null,"url":null,"abstract":"The objective of this study is to deduce signal-to-noise ratio (SNR) based loglikelihood function involved in detecting low-observable targets (LoTs) including drones Illuminated by a low probability of intercept (LPI) radar operating in littoral regions. Detecting obscure targets and drones and tracking them in near-shore ambient require ascertaining signal-related track-scores determined as a function of radar cross section (RCS) of the target. The stochastic aspects of the RCS depend on non-kinetic features of radar echoes due to target-specific (geometry and material) characteristics; as well as, the associated radar signals signify randomly-implied, kinetic signatures inasmuch as, the spatial aspects of the targets fluctuate significantly as a result of random aspect-angle variations caused by self-maneuvering and/or by remote manipulations (as in drones). Hence, the resulting mean RCS value would decide the SNR and loglikelihood ratio (LR) of radar signals gathered from the echoes and relevant track-scores decide the performance capabilities of the radar. A specific study proposed here thereof refers to developing computationally- tractable algorithm(s) towards detecting and tracking hostile LoTs and/or drones flying at low altitudes over the sea (at a given range, R) in littoral regions by an LPI radar. Estimation of relevant detection-theoretic parameters and decide track-scores in terms of maximum likelihood (ML) estimates are presented and discussed.","PeriodicalId":448328,"journal":{"name":"Transactions on Networks and Communications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of RCS-specific SNR and Loglikelihood Function in Detecting Low-observable Targets and Drones Illuminated by a Low Probability of Intercept Radar Operating in Littoral Regions\",\"authors\":\"P. Neelakanta, D. D. Groff\",\"doi\":\"10.14738/tnc.94.10512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to deduce signal-to-noise ratio (SNR) based loglikelihood function involved in detecting low-observable targets (LoTs) including drones Illuminated by a low probability of intercept (LPI) radar operating in littoral regions. Detecting obscure targets and drones and tracking them in near-shore ambient require ascertaining signal-related track-scores determined as a function of radar cross section (RCS) of the target. The stochastic aspects of the RCS depend on non-kinetic features of radar echoes due to target-specific (geometry and material) characteristics; as well as, the associated radar signals signify randomly-implied, kinetic signatures inasmuch as, the spatial aspects of the targets fluctuate significantly as a result of random aspect-angle variations caused by self-maneuvering and/or by remote manipulations (as in drones). Hence, the resulting mean RCS value would decide the SNR and loglikelihood ratio (LR) of radar signals gathered from the echoes and relevant track-scores decide the performance capabilities of the radar. A specific study proposed here thereof refers to developing computationally- tractable algorithm(s) towards detecting and tracking hostile LoTs and/or drones flying at low altitudes over the sea (at a given range, R) in littoral regions by an LPI radar. Estimation of relevant detection-theoretic parameters and decide track-scores in terms of maximum likelihood (ML) estimates are presented and discussed.\",\"PeriodicalId\":448328,\"journal\":{\"name\":\"Transactions on Networks and Communications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Networks and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14738/tnc.94.10512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Networks and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14738/tnc.94.10512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of RCS-specific SNR and Loglikelihood Function in Detecting Low-observable Targets and Drones Illuminated by a Low Probability of Intercept Radar Operating in Littoral Regions
The objective of this study is to deduce signal-to-noise ratio (SNR) based loglikelihood function involved in detecting low-observable targets (LoTs) including drones Illuminated by a low probability of intercept (LPI) radar operating in littoral regions. Detecting obscure targets and drones and tracking them in near-shore ambient require ascertaining signal-related track-scores determined as a function of radar cross section (RCS) of the target. The stochastic aspects of the RCS depend on non-kinetic features of radar echoes due to target-specific (geometry and material) characteristics; as well as, the associated radar signals signify randomly-implied, kinetic signatures inasmuch as, the spatial aspects of the targets fluctuate significantly as a result of random aspect-angle variations caused by self-maneuvering and/or by remote manipulations (as in drones). Hence, the resulting mean RCS value would decide the SNR and loglikelihood ratio (LR) of radar signals gathered from the echoes and relevant track-scores decide the performance capabilities of the radar. A specific study proposed here thereof refers to developing computationally- tractable algorithm(s) towards detecting and tracking hostile LoTs and/or drones flying at low altitudes over the sea (at a given range, R) in littoral regions by an LPI radar. Estimation of relevant detection-theoretic parameters and decide track-scores in terms of maximum likelihood (ML) estimates are presented and discussed.